Ask DBMS Expert


Home >> DBMS

Big Data Assignment -

Regression Models - Regression models are concerned with target variables that can take any real value. The underlying principle is to find a model that maps input features to predicted target variables. Regression is also a form of supervised learning.

Regression models can be used to predict just about any variable of interest. A few examples include the following:

  • Predicting stock returns and other economic variables
  • Predicting loss amounts for loan defaults (this can be combined with a classification model that predicts the probability of default, while the regression model predicts the amount in the case of a default)
  • Recommendations (the Alternating Least Squares factorization model from Chapter 5, Building a Recommendation Engine with Spark, uses linear regression in each iteration)
  • Predicting customer lifetime value (CLTV) in a retail, mobile, or other business, based on user behavior and spending patterns

In the different sections of this chapter, we will do the following:

Introduce the various types of regression models available in ML

  • Explore feature extraction and target variable transformation for regression models
  • Train a number of regression models using ML
  • Building a Regression Model with Spark
  • See how to make predictions using the trained model
  • Investigate the impact on performance of various parameter settings for regression using cross-validation

Types of regression models - The core idea of linear models (or generalized linear models) is that we model the predicted outcome of interest (often called the target or dependent variable) as a function of a simple linear predictor applied to the input variables (also referred to as features or independent variables).

y = f(wTx)

Here, y is the target variable, w is the vector of parameters (known as the weight vector), and x is the vector of input features. wTx is the linear predictor (or vector dot product) of the weight vector w and feature vector x. To this linear predictor, we applied a function f (called the link function). Linear models can, in fact, be used for both classification and regression simply by changing the link function. Standard linear regression uses an identity link (that is, y = wTx directly), while binary classification uses alternative link functions as discussed here.

Spark's ML library offers different regression models, which are as follows:

  • Linear regression
  • Generalized linear regression
  • Logistical regression
  • Decision trees
  • Random forest regression
  • Gradient boosted trees
  • Survival regression
  • Isotonic regression
  • Ridge regression

Regression models define the relationship between a dependent variable and one or more independent variables. It builds the best model that fits the values of independent variables or features.

Linear regression unlike classification models such as support vector machines and logistic regression is used for predicting the value of a dependent variable with generalized value rather than predicting the exact class label.

Linear regression models are essentially the same as their classification counterparts, the only difference is that linear regression models use a different loss function, related link function, and decision function. Spark ML provides a standard least squares regression model (although other types of generalized linear models for regression are planned).

Assignment -

1. Utilising Python 3 Build the following regression models:

  • Decision Tree
  • Gradient Boosted Tree
  • Linear regression

2. Select a dataset (other than the example dataset given in section 3) and apply the Decision Tree and Linear regression models created above. Choose a dataset from Kaggle.

3. Build the following in relation to the gradient boost tree and the dataset choosen in step 2

  • Gradient boost tree iterations
  • Gradient boost tree Max Bins

4. Build the following in relation to the decision tree and the dataset choosen in step 2

  • Decision Tree Categorical features
  • Decision Tree Log
  • Decision Tree Max Bins
  • Decision Tree Max Depth

5. Build the following in relation to the linear regression and the dataset choosen in step 2

a) Linear regression Cross Validation

  • Intercept
  • Iterations
  • Step size
  • L1 Regularization
  • L2 Regularization

b) Linear regression Log (see section 5.4)

6. Follow the provided example of the Bike sharing data set and the guide lines in the sections that follow this section to develop the requirements given in steps 1, 3, 4 and 5.

Attachment:- Assignment Files.rar

DBMS, Programming

  • Category:- DBMS
  • Reference No.:- M93107208
  • Price:- $50

Priced at Now at $50, Verified Solution

Have any Question?


Related Questions in DBMS

Data mining assignment -in this assignment you are asked to

Data Mining Assignment - In this assignment you are asked to explore the use of neural networks for classification and numeric prediction. You are also asked to carry out a data mining investigation on a real-world data ...

Sql query assignment -for this assignment you are to write

SQL Query Assignment - For this assignment you are to write your answers in a word document. This assignment is in three parts: Part A (reporting queries), Part B (query performance), Part C (query design). For this assi ...

The groceries datasetimagine 10000 receipts sitting on your

The groceries Dataset Imagine 10000 receipts sitting on your table. Each receipt represents a transaction with items that were purchased. The receipt is a representation of stuff that went into a customer's basket. That ...

You are in a real estate business renting apartments to

You are in a real estate business renting apartments to customers. Your job is to define an appropriate schema using SQL DDL in MySQL. The relations are Property(Id, Address, NumberOfUnits), Unit(ApartmentNumber, Propert ...

Objectivethe objective of this lab is to be familiar with a

OBJECTIVE: The objective of this lab is to be familiar with a process in big data modeling. You're required to produce three big data models using the MS PowerPoint software. This tool is available on UMUC Virtual Deskto ...

The relation memberstudentid organizationid roleid stores

The relation Member(StudentId, OrganizationId, RoleId) stores the membership information of student joining organization. For example, ('S1', 'O2', 'R3') indicates that student with Id 'S1' joined the organization with i ...

Relational database exerciseyou have been assigned to a new

Relational Database Exercise: You have been assigned to a new development team. A client is requesting a relational database system to manage their present store with the anticipation of adding more stores in the future. ...

Relational database design a given the following business

Relational Database Design A) Given the following business rules, identify entity types, attributes (at least two attributes for each entity, including the primary key) and relationships, and then draw an Entity-Relation ...

We can represent a data set as a collection of object nodes

We can represent a data set as a collection of object nodes and a collection of attribute nodes, where there is a link between each object and each attribute, and where the weight of that link is the value of the object ...

Data model development and implementationpurpose of the

Data model development and implementation Purpose of the assessment (with ULO Mapping) The purpose of this assignment is to develop data models and map Database System into a standard development environment to gain unde ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As