Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Computer Network & Security Expert

Part 1 of 1 - 1 Question 1 of 16

Let n=pq, where p,q are primes of the same length and let phi be Euler's totient function. 

Consider the following problems: (P1) computing the output p from an input n; (P2) computing the output phi(n) from an input n. Which one of the following statements is true? 

A. if P1 is easy then P2 is easy

B. if P1 is hard then P2 is hard

C. P1 and P2 are polynomial-time equivalent

D. All of the above

2 Question 2 of 16

Consider the problem of computing discrete logarithms in a cyclic group (G,?), with group’s order m; that is, given the group’s generator g, an element y ∈ G, compute an integer x ∈ Zm such that g ? • • • ? g = y, where there are x − 1 occurrences of ?. Then consider the exhaustive search algorithm to search for the discrete logarithm of y in base g for a cyclic group G of order m. Given this algorithm and its running time t(m,n), we want to infer considerations on computing discrete logarithm in G being easy or conjectured to be hard depending on the choices of m as a function of the length n of the group elements. Let m_easy(n) be a value for m such that computing discrete logarithms in G is easy and m_hard(n) be a value for m such that computing discrete logarithms in G may be conjectured to be hard. Which functions would you select as most meaningful for m_easy(n), m_hard(n)?

A. m_easy(n)=O(n); m_hard(n)=omega(n)

B. m_easy(n)=O(poly(n)); m_hard(n)=O(poly(n))

C. m_easy(n)=O(poly(n)); m_hard(n)=omega(poly(n))

D. m_easy(n)=O(n); m_hard(n)=O(n)

3 Question 3 of 16

You plan to use a public-key cryptosystem based on the RSA trapdoor permutation in three different real-life applications, in which the attacker has, respectively, only one of the following resources: (1) a single computer, (2) a collection of computers distributed across the Internet, and (3) a quantum computer. When choosing the length of the modulus n for the RSA trapdoor permutation, you plan to choose a different length for each of the above three attacker resource scenarios. Which of the following length settings is closer to your choice?

A. (a): 1024; (b): 2048; (c): 4096

B. (a): 512; (b): 1024; (c): I would not use RSA

C. (a) 2048; (b): 4096; (c): I would not use RSA

D. (a) 512; (b): 1024; (c): 2048

4 Question 4 of 16

Consider the following three assumptions:

1) The hardness of factoring integers that are product of two primes of the same length

2) The hardness of computing discrete logarithms modulo primes

3) The hardness of inverting the RSA function.

Which of them is sufficient to construct a trapdoor function?

A. Only (1)

B. Only (2)

C. Only (3)

D. (1), (2), or (3)

5 Question 5 of 16

Let us denote as "X ci Y" the fact that random variables X and Y are computationally indistinguishable. Assume (A1,A2) is a pair of efficiently samplable (i.e., a variable sample can be efficiently generated) random variables and assume the same about (B1,B2). Which of these conditions is sufficient to have that (A1,A2) ci (B1,B2)? (Hint: Recall that when two random variables X and Y, the probability that X=x conditioned on Y=y is equal to the probability that X=x.)

A.A1 and A2 are independent, B1 and B2 are independent, A1 ci B1, A2 ci B2

B.A1 ci B1, A2 = A1, B2 = B1

C.A2 ci B2, A1 = A2, B1 = B2

D.All of the above

6 Question 6 of 16

Consider the following three assumptions:

1) The hardness of factoring integers that are product of two primes of the same length

2) The hardness of computing discrete logarithms modulo primes

3) The hardness of inverting the RSA function.

Which of them is sufficient to construct a pseudo-random generator, a pseudo-random function and a pseudo-random permutation?

A. Only (1)

B. Only (2)

C.Only (3)

D.(1), (2), or (3)

7 Question 7 of 16

Which among these are the differences between the perfect indistinguishability notion for classical symmetric encryption schemes and the (computational) indistinguishability notion for modern symmetric encryption schemes?

A. In perfect indistinguishability the adversary's algorithm runs in polynomial time and his advantage can be greater than 0 while in computational indistinguishability the adversary's algorithm is not restricted to run in polynomial time and his advantage has to be equal to 0

B. In perfect indistinguishability the adversary's algorithm is not restricted to run in polynomial time and his advantage can be greater than 0 while in computational indistinguishability the adversary's algorithm runs in polynomial time and his advantage has to be equal to 0

C. In perfect indistinguishability the adversary's algorithm is not restricted to run in polynomial time and his advantage has to be equal to 0 while in computational indistinguishability the adversary's algorithm runs in polynomial time and his advantage can be greater than 0

D. In perfect indistinguishability the adversary's algorithm runs in polynomial time and his advantage has to be equal to 0 while in computational indistinguishability the adversary's algorithm is not restricted to run in polynomial time and his advantage can be greater than 0

8 Question 8 of 16

Assume |s1|=|s2|=n and consider the functions defined, for any s1 and s2, as:

(a) G1(s1,s2)=s1 xor s2,  (b) G2(s1,s2)=(s1, s2, s1 xor s2).

We have that:

A.G1 and G2 are pseudo-random generators because their outputs are uniformly (and thus, pseudo-randomly) distributed if so are their input

B.G1 and G2 are not pseudo-random generators because either their outputs are not longer than their inputs or there exists a statistical test that distinguishes their outputs from a random string of the same length

C.G1 and G2 are not pseudo-random generators because either there exists an efficient algorithm that can compute their input from their output or their outputs are not longer than their inputs

D.G1 and G2 can be proved to be pseudo-random generators using a proof by reduction

9 Question 9 of 16

Let us denote as "X ci Y" the fact that random variables X and Y are computationally indistinguishable.

For any random variables X,Y,Z, consider the statements:

(a) if X ci Y then Y ci X,

(b) if X ci Y and Y ci X then X = Y,

(c) if X ci Y and Y ci Z then X ci Z,

(d) if X = Y then X ci Y,

(e) if X ci Y then X = Y.

Which of them are true?

A. (a), (c) and (d)

B.(b), (c) and (d)

C. (b), (c) and (e)

D.(a), (d) and (e)

10 Question 10 of 16

To prove that a permutation P is not a pseudo-random permutation, it suffices to show an efficient oracle adversary that can distinguish, with not negligible probability, the case in which its oracle is P from the case in which its oracle is a random permutation RP with the same input and output domains. To obtain an algorithm that makes this distinction, it suffices to find a distinguishing condition (or a set of them) among the adversary's query inputs and query outputs such that: (a) if the oracle is P, then the condition holds with high (e.g., 1) probability; (b) if the oracle is RP, then the condition holds with low (e.g., negligible) probability. Define the extended FT transform as the permutation that maps (L,M,R) to (R,f_k(R) xor M,f_k(M) xor L), where k is a random key, f is a pseudo-random function, and L,M,R are n-bit strings. Which of the following conditions are distinguishing conditions for the 1-round iteration and 2-round iteration of the extended FT transform, respectively? Notation: (L',R') and (L'',R'') denote the 1-round and 2-round outputs, respectively, of the FT transform on input (L,R); when we run the transform on different inputs, we use the notations (L0,R0), (L1,R1), .... for the inputs, (L0',R0'), (L1',R1'), .... for the 1-round outputs and (L0'',R0''), (L1'',R1''), .... for the 2-round outputs.

The notation for the extended FT transform is analogously defined.

A. 1-round extended FT: (L'=R); 2-round extended FT: (L0 xor L1 = L0'' xor L1'') and (R0=R1)

B. 1-round extended FT: (L'=M); 2-round extended FT: M0=M1, L0=L1 and L0''=L1''

C. 1-round extended FT: L=M=R, and R'=M'; 2-round extended FT: L=M=R, and L''=M''

D. None of the above

11 Question 11 of 16

Which among these are the differences between the indistinguishability notion with chosen message attack and the indistinguishability notion with adaptive chosen message attack?

A. In the indistinguishability with chosen message attack notion, the adversary can additionally and repeatedly query the E(k,.) algorithm as an oracle even after seeing the ciphertext and can later use these queries and responses to generate its guess for which message was encrypted as c

B. In the indistinguishability with chosen message attack notion, the adversary can additionally and repeatedly query the E(k,.) algorithm as an oracle even after seeing the ciphertext but cannot later use these queries and responses to generate its guess for which message was encrypted as c

C. In the indistinguishability with adaptive chosen message attack notion, the adversary can additionally and repeatedly query the E(k,.) algorithm as an oracle even after seeing the ciphertext and can later use these queries and responses to generate its guess for which message was encrypted as c

D. In the indistinguishability with adaptive chosen message attack notion, the adversary can additionally and repeatedly query the E(k,.) algorithm as an oracle even after seeing the ciphertext but cannot later use these queries and responses to generate its guess for which message was encrypted as c

12 Question 12 of 16

Let G:{0,1} n-->{0,1} 2n be a pseudo-random generator and consider the following encryption scheme (KG,E,D), where KG generates a random string k; E, on input key k and a message bit b, returns c = G(k) xor 1 2n if b=1 or c = G(k) if b=0 and D is naturally defined so to satisfy the decryption correctness property. 

Which of the following security notions is satisfied by (KG,E,D)?

A. security in the sense of indistinguishability

B. security in the sense of indistinguishability against chosen message attack

C. security in the sense of indistinguishability against adaptive chosen message attack

D. none of the above

13 Question 13 of 16

Let F:{0,1}^n-->{0,1}^{n} be a pseudo-random function and consider the following encryption scheme (KG,E,D), where KG generates a random string k; E, on input key k and a string m, returns c =F(k,0) xor m and D is naturally defined so to satisfy the decryption correctness property. 

Which of the following security notions is satisfied by (KG,E,D)? 

A. security in the sense of indistinguishability

B. security in the sense of indistinguishability against chosen message attack

C. perfect secrecy

D. none of the above

14 Question 14 of 16

Let P:{0,1}^n-->{0,1}^n be a pseudo-random permutation and consider the following encryption scheme (KG,E,D), where KG generates a random string k; E, on input key k and an n-bit string m, returns c =P(k,m) and D is naturally defined so to satisfy the decryption correctness property. Which of the following security notions is satisfied by (KG,E,D)?

A. security in the sense of indistinguishability

B. security in the sense of indistinguishability against chosen message attack

C. perfect secrecy

D. none of the above

15 Question 15 of 16

Consider the following three assumptions:

1) The hardness of factoring integers that are product of two primes of the same length

2) The hardness of computing discrete logarithms modulo primes

3) The hardness of inverting the RSA function.

Which of them is sufficient to construct a one-way function?

A. Only (1)

B. Only (2)

C. Only (3)

D. (1), (2), or (3)

Computer Network & Security, Computer Science

  • Category:- Computer Network & Security
  • Reference No.:- M9729987

Have any Question?


Related Questions in Computer Network & Security

Network project management assignment -purpose of the

Network Project Management Assignment - Purpose of the assessment - The purpose of this assignment is to build a clear understanding of project management fundamentals and their application, specifically: demonstrate pro ...

Below are the supply and demand schedules for fresh coffee

Below are the supply and demand schedules for fresh coffee in Vancouver: Price ($/cup) Quantity Demanded  (cups/day) Quantity Supplied (cups/day) 1 440 330 2 415 360 3 390 390 4 365 420 5 340 450 6 315 480 7 290 510 a. W ...

Advanced network design assessment - human factors in

Advanced Network Design Assessment - Human factors in network analysis and design Purpose of the assessment - This assignment is designed to assess students' knowledge and skills related to the following learning outcome ...

Assume that the number of customers who arrive at a water

Assume that the number of customers who arrive at a water ice stand follows the Poisson distribution with an average rate of 6.4 per 30 minutes. What is the probability that more than one customer will arrive during the ...

Fiona told her friend that she is very fortunate as the

Fiona told her friend that she is very fortunate as the slow-down in the economy has not decreased sales in her grocery store by much compared to sales of new cars in his car dealership. Explain what Fiona meant using th ...

You just signed a 30-year lease agreement for a business

You just signed a 30-year lease agreement for a business property. The monthly rent for the first year is $1,000/month, with the ?rst month's rent due today. Starting from the second year onward, the monthly rent will be ...

Advanced network design assessment - human factors in

Advanced Network Design Assessment - Human factors in network analysis and design Purpose of the assessment - This assignment is designed to assess students' knowledge and skills related to the following learning outcome ...

Content analysis assignmentoverviewthis assignment has

Content Analysis Assignment Overview This assignment has three major aims: - To help students gain good understanding of all ITECH1102 theoretical and practical material. - To encourage students to use content analysis s ...

Data model development and implementationpurpose of the

Data model development and implementation Purpose of the assessment The purpose of this assignment is to develop data models and map Database System into a standard development environment to gain understanding of data m ...

Cybersecurity policy design issues describe cybersecurity

Cybersecurity Policy Design Issues Describe cybersecurity policy features that are needed to protect against the Insider Threat, Operations Security, Access Control and Biometric Authentication What features can be added ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As