Ask Biology Expert

Xenotransplantation

Over the past 20 years transplantation of heart and kidney has become almost a routine in human but the availability of donors is the major limiting factor and there is a shortage of suitable organs for transplant and many patients die as a result. Transgenic animals can be developed as organ donors to meet this shortfall. Somatic cell cloning will improve the chances of success because it will allow animal to be produced in which the animal proteins responsible for rejection will be removed and replaced by human counterparts. Clones of transgenic bovine embryos and fetal dopamine cells were isolated and transplanted in a patient of Parkinson disease successfully; however, the real effect on recipient has yet to be confirmed. The fact that Dolly was cloned from a cell taken from an adult ewe shows that even specialized cells can be reprogrammed into all the cell types that make up an intact animal. Moreover, there is prospect of using the patient's own cells in such therapies.

The  transplantation of animal organs, tissues or cells into humans, xenotransplantation - is a major practical use to which gene knockout technology in large animals could be applied. Owing to its abundant supply, ease of domestication, anatomical and physiological compatibility, the pig has become the candidate species of choice. However, formidable barriers of cross species reject ion limit xenotransplantation, with the first major hurdle being the phenomenon of hyper acute rejection. The major cause of this rejection is the reaction of antibodies present in human blood to a carbohydrate, galactose-a-1, and 3-galactose. The structures or epitopes of this disaccharide that induce the immune reaction are present on the cell surface of most mammals but not in humans.

Gene knockout technology now opens up the possibility of deleting the a-1,3galactosyltransferase gene, which would allow the production of animals lacking this epitope. This and other targets relating to xenotransplantation has been a major driver to developing pig cloning technology. Concerns, however, have been raised over the possible risk of zoonoses, due to expression of porcine endogenous retroviruses. Gene knockout technology could be used to delete potentially active proviruses from the pig genome, although if there are a large number of active loci this may not be practicable. Nevertheless, if cloning can be made reasonably efficient in the pig, it will provide a method for cloning animals with the appropriate genetic modifications and minimum provirus load which would reduce any risk.

Unfortunately, bovine serum albumin that is synthesised in the liver is secreted across the mammary epithelium into milk. Bovine and human serum albumin is very similar and the high levels of the endogenous protein in the milk poses a problem for the purification of the human protein. One solution to this is to replace the bovine gene with its human counterpart. Thus, the bovine protein would be eliminated without compromising the animals' viability and, indeed, the secretion into milk of the liver- derived human protein would augment that produced in the mammary gland itself.

For the future even more ambitious types of genetic modification can be contemplated. Mice have already been generated in which the major immunoglobulin (Ig) gene families were deleted and replaced by the corresponding light and heavy chain human Ig families. Immunisation of these animals with specific epitopes generates monoclonal antibodies for diagnostic or therapeutic applications that can be produced by means of standard monoclonal antibody technology. Polyclonal antibodies, however, have a greater affinity and broader specificity for their target than monoclonals and, as such, are preferred for therapeutic applications. Notwithstanding the technical difficulties similar modifications in livestock could enable the bulk production of specific human polyclonal antibodies, and so take antibody production technology to the next stage.

Biology, Academics

  • Category:- Biology
  • Reference No.:- M9508141

Have any Question?


Related Questions in Biology

Case study question -case study - mary 21 years old

Case Study Question - Case Study - Mary, 21 years old, presented to the hospital emergency department with an infected laceration on her left foot. Mary was at a beach resort four days ago, when she trod on a broken glas ...

Assignment -the upper-case blue letters are the 14th exon

Assignment - The upper-case, blue letters are the 14th exon (of 20) in the Hephl1 gene in mice. The lower-case (black) letters are from the flanking introns.  The highlighted bases indicate primers that may be used to ge ...

Question - a pure strain of mendels peas dominant for all

Question - A pure strain of mendel's peas, dominant for all seven of his independently assorting genes, was testcrossed. How many different kinds of gametes could the F1 PRODUCE?

Igfbp2 rbp4 and factor d post bariatric surgeryigfbp2 what

IGFBP2/ RBP4 and Factor D Post Bariatric Surgery IGFBP2 ( what the normal physiological action in the body? And how it affectedby obesity? andpost bariatric surgery?) RBP4 (what the normal physiological action in the bod ...

Assignment on nutrition - q1 task you need to select 2

Assignment on Nutrition - Q1. Task: You need to select 2 different age groups of your choice. You will need to plan balanced meals with snacks for a day. Once you have laid out the meal plan you need to: Explain why the ...

Question - gene cloning a please write the steps to clone

Question - Gene Cloning a) Please write the steps to clone the protease gene from Bacillus strain whose genome sequence is not known. b) Express the protease gene to obtain the enzyme in high yield, please plan your prot ...

Instructions address each question below as it relates to

Instructions: Address each question below as it relates to the caw study given. A patient was brought to the Emergency Department by ambulance with two arrow wounds. One arrow is still in the patient on the left side; en ...

Use of molecular tools and bioinforrnatics in the diagnosis

Use of Molecular Tools and Bioinforrnatics in the Diagnosis Characterization of Enteric Pathogens from a Case Study Purpose: The purpose of this project is to familiarize the student with modern molecular tools and bioin ...

Experiment 1 staining video1 open the media player by

Experiment 1: Staining Video 1. Open the Media Player by clicking on the film-strip button in the lower left of the lab's window frame, as shown below. The Media Player is a repository of images, videos, saved snapshots, ...

Chosen dr jan nolta- stem cell researcher head of uc davis

Chosen Dr. Jan Nolta- Stem Cell Researcher Head of UC Davis Stem Cell Program Director Topic Background: early Stem cells have the ability to develop into many different types of cells. Stem Cell Research is not without ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As