Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Electrical & Electronics Expert

What is Q-switching in laser ? Give its application. Discuss the elementary idea of mode locking.

Generation of high power pulses

There are three basic techniques to generate high power pulses from laser. These are called : 1. Q-Switching  2. Cavity Damping  3. Mode LockingIn normal mode, some lasers work in continuous wave mode while others work in pulsed wave mode. In both the modes power obtained is generally small. In many applications we require high power lasers even though for a very small duration. The above techniques are useful for large peak powers even though for short time. Q-switching and mode locking techniques are discussed as under:

Q-Switching

When we switch in the laser, optical pumping rate towards a steady state which depends on the pumping rate towards upper level to the decay rate towards lower level. Here laser beam begin to grow and ultimately reaches a saturation state when the intensity starts drawing energy from the medium. As the beam grows, population density N is reduced by stimulated emission and consequently the inversion density reaches a new lower steady steady value. The time to teach this new equilibrium value is the time required for the developing beam to make m transits through the amplifier and the relation is given by where   d-distance between two mirrors   l-length of gain medium   nL-refractive index of the medium   nc-refractive index of the space within cavity that does not include gain medium. Values of t range between 1 ns to 103 ns in most laser system, the upper inner level life time is shorter than t except in case of solid state lasers in which upper level life time t is longer than t . If it were possible to pump this solid state gain media for the duration of t without the cavity in place and then suddenly switch the cavity back into place, it would be possible to operate laser with highest possible gain and thereby get higher peak in the form of a giant pulse as the gain is much above the steady state condition. The process of observing the above technique is called Q-Switching as in this case the cavity is changed from low Q to a high Q state, where Q corresponds to the energy stored to the energy dissipated within the cavity. In order to produce necessary high inversion density required for Q-Switching, the following requirement must be satisfied. 

Mode Locking

In Q-Switching, the pulses generated are short but their duration is – few ns. Another technique has been developed where optical pulses as short as 6*10-15 sec can be obtained and this technique is called mode locking. For visible pulses of such a short duration, the electric field oscillated for only a few cycles. Mode locking is achieved by combining in phase a number of distinct longitudinal modes of a laser, all having different frequencies. When modes of waves of different frequencies but random phases are added, they produce a fandom distributed, average output of both the electric field and the intensity in the time domain. The first mode-locking was obtained by Hargrave, Fork and Pollack and since the this technique has become a powerful method of producing very short duration pulses of the order of 10-11th 10-12 sec.

Electrical & Electronics, Engineering

  • Category:- Electrical & Electronics
  • Reference No.:- M9503736

Have any Question?


Related Questions in Electrical & Electronics

Problems -problem 1 - find v0 in the op amp circuit of fig

Problems - Problem 1 - Find v 0 in the op amp circuit of Fig. 1. Problem 2 - Compute i 0 (t) in the op amp circuit in Fig. 2 if v s = 4 cos(10 4 t). Problem 3 - If the input impedance is defined as Z in = v s /I s , find ...

Research report1 read 3 to 4 journal articles about digital

Research report 1. Read 3 to 4 journal articles about digital control or industrial control, eg. one particular application, implementation aspect such as selection of sampling time, hardware etc. No text book example is ...

Questions -problem 1 - determine the laplace transform ofa

Questions - Problem 1 - Determine the Laplace transform of: (a) cos(ωt + θ) (b) sin(ωt + θ) Problem 2 - Obtain the Laplace transform of each of the following functions: (a) e -2t cos(3t)u(t) (b) e -2t sin(4t)u(t) (c) e - ...

Question 1 in the voltage regulator circuit in figure p221

Question 1: In the voltage regulator circuit in Figure P2.21, V 1 = 20 V, V Z = 10 V, R i = 222Ω and P z (max) = 400 mW. (a) Determine I L, I z , and I L , if R L = 380Ω. (b) Determine the value of R L , that will establ ...

Nanotechnology engineering - resonance circuits questions

Nanotechnology Engineering - Resonance Circuits Questions - Q1) A series RLC network has R = 2KΩ, L = 40mH and C = 1μF. Calculate the impedance at resonance and at one-fourth, one-half, twice, and four times the resonant ...

Questions -problem 1 - solve for i0 in fig using mesh

Questions - Problem 1 - Solve for i 0 in Fig. using mesh analysis. Problem 2 - Use mesh analysis to find current i 0 in the circuit. Problem 3 - Use mesh analysis to find v 0 in the circuit. Let v s1 = 120 cos(100t+ 90 o ...

Assignment -consider a common emitter amplifiernow lets say

Assignment - Consider a common emitter amplifier: Now let's say that R B and R C do a fine job at DC biasing the BJT but they are large so they can be neglected for small signal (AC) analysis. In that case, the equivalen ...

Problem 1given a sequence xn for 0lenle3 where x0 1 x1 1

Problem # 1: Given a sequence x(n) for 0≤n≤3, where x(0) = 1, x(1) = 1, x(2) = -1, and x(3) = 0, compute its DFT X(k). (Use DFT formula, don't use MATLAB function) Problem # 2: Use inverse DFT and apply it on the Fourier ...

A four-pole star-connected squirrel-cage induction motor

A four-pole, star-connected, squirrel-cage induction motor operates from a variable voltage 50 Hz three-phase supply. The following results were obtained as the supply voltage was gradually reduced with the motor running ...

Questions -q1 a single-phase transformer rated 21 kv130 v

Questions - Q1. A single-phase transformer rated 2.1 kV/130 V, 7.8 kVA has the following winding parameters: r1= 0.7Ω, x1 = 0.9Ω, r2 = 0.04Ω and x2 = 0.05Ω. Determine: a. The combined winding resistance ________ Ω and le ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As