Ask Biology Expert

What is Embryogenesis explain in detail?

Embryogenesis in humans consists of the first eight weeks of development of the zygote. Embryogenesis in animals is generally divided into four main stages: cleavage, gastrulation, neurulation, and organogenesis. The later stages of cleavage and gastrulation are greatly modified in higher animals, including man.

Cleavage :  Cleavage, the initial stage of cell division, begins while the egg is still in the Fallopian tube. During this stage, various gene-regulating factors segregate to determine later development of each cell. Human cells undergo radial cleavage; that is, a solid ball of cells is formed. This group of cells is called the morula, and it has radial symmetry. No cell growth occurs during this stage, which involves only cell division. That is to say, the cell becomes subdivided without increasing in size. Morula cells secrete substances that result in formation of a central cavity, forming a hollow fluid-filled sphere. This stage is called a blastula in lower animals, and is modified in mammals to form a structure referred to as a blastocyst.

The blastocyst contains an inner mass of cells adherent to the thin outer wall at one point of the sphere. All of the three primary germ layers of the embryo--the ectoderm, mesoderm, and endoderm--will come from this inner cell mass. The ectoderm will develop to form what ultimately becomes the skin and associated sweat, sebaceous, and mammary glands, mucous membranes of the mouth and anus, the nervous system, lens of the eye, and the inner ear. The mesoderm will form what ultimately becomes the connective tissue, dermis of the skin, muscles, the circulatory system, skeletal system, outer layers of the gastrointestinal and respiratory systems, and reproductive and urinary systems except for the urinary bladder. The endoderm will form most of what becomes the digestive tract, most of the respiratory tract, the liver, pancreas, and the bladder.

The thin outer layer of the blastocyst, called the trophoblast, secretes enzymes to initiate the process of implantation of the embryo in the endometrium of the uterus. The trophoblast forms four membranes that develop into distinct parts of the embryo. The outermost membrane, the chorion, is already formed by the sixth day following fertilization. It develops fingerlike projections called chorionic villi that interact and grow into the endometrium to form the placenta, the organ through which the embryo receives nutrients from the maternal blood supply and eliminates wastes. The placenta also secretes hormones to sustain the pregnancy. Chorionic gonadotropic hormone activates the corpus luteum to produce estrogens and progesterone, which stimulate growth of the endometrium. High estrogen levels also inhibit the pituitary from production of follicle-stimulating hormone and luteinizing hormone, preventing ovulation and menstruation during pregnancy.

Beneath the chorion, the allantois forms a cavity that receives wastes early in development, and later becomes the umbilical cord, the conduit through which blood vessels extend from the embryo and the placenta. The membrane immediately surrounding the embryo, the amnion, becomes a fluid-filled sac which serves to cushion and protect the embryo and provide a fluid environment for the embryo. The fourth membrane, the yolk sac, provides nutrients to the embryo before implantation.

Gastrulation :  After about fifteen days, the embryo begins the second stage of embryogenesis, gastrulation. At the beginning, a double layer of cells called the embryonic disk separates the amniotic cavity from the yolk sac. The cell layers then split apart, and a slit called the primitive streak develops in the center of the upper layer. Cells of the upper layer migrate through the slit into the interior of the embryo, forming the mesoderm. The lower layer of cells, the endoderm, forms the notochord, the primitive structure that will become the backbone.

Beginning at gastrulation, differentiation of the embryo is controlled by a process called induction, by which adjacent cells and tissues alter the fate of other cells. The mechanism of induction is not well understood, but apparently the cells that are induced to form a structure must originate in the proper germ layer for it to occur. For instance, invaginations called optic vesicles in the embryo induce ectoderm to form an eye lens. If the optic vesicles are transplanted from the head to elsewhere on the body, they can still produce a lens from overlying ectoderm. They cannot produce lenses from mesoderm or endoderm.

Cells destined to become endoderm, mesoderm, and ectoderm form originally in the gastrula by primary embryonic induction, again, a process not well understood.

Neurulation :  Neurulation, or forming of the neural tube, occurs from the 17th to the 25th days. This formation of the precursor of the spinal cord and brain begins by pinching off a tube of cells in the ectoderm alongside the notochord. At this stage, the embryo is only about 2 mm long.

Organogenesis :  After neurulation, development of the body organs, or organogenesis, occurs. The heart, which is still shaped like a swelling in a tube, begins to beat. The nervous system, gut, and blood vessels develop. By the end of the fifth week, the embryo's head makes up one half of the entire body mass. Arm and leg buds, eyes, ears, and nasal organs begin to develop. By the sixth week, the embryo has gill slits and a prominent tail, reminding us of its evolutionary ancestry. These structures are reabsorbed at later stages of development.

Following organogenesis, at the eighth week of pregnancy, the embryo is distinctly human and is called a fetus. These rapidly developing structures are most susceptible to harmful environmental influences during this period of embryogenesis. Drugs and alcohol, which easily reach the fetus through the placenta, are especially dangerous.

Biology, Academics

  • Category:- Biology
  • Reference No.:- M9542062

Have any Question?


Related Questions in Biology

Case study question -case study - mary 21 years old

Case Study Question - Case Study - Mary, 21 years old, presented to the hospital emergency department with an infected laceration on her left foot. Mary was at a beach resort four days ago, when she trod on a broken glas ...

Assignment -the upper-case blue letters are the 14th exon

Assignment - The upper-case, blue letters are the 14th exon (of 20) in the Hephl1 gene in mice. The lower-case (black) letters are from the flanking introns.  The highlighted bases indicate primers that may be used to ge ...

Question - a pure strain of mendels peas dominant for all

Question - A pure strain of mendel's peas, dominant for all seven of his independently assorting genes, was testcrossed. How many different kinds of gametes could the F1 PRODUCE?

Igfbp2 rbp4 and factor d post bariatric surgeryigfbp2 what

IGFBP2/ RBP4 and Factor D Post Bariatric Surgery IGFBP2 ( what the normal physiological action in the body? And how it affectedby obesity? andpost bariatric surgery?) RBP4 (what the normal physiological action in the bod ...

Assignment on nutrition - q1 task you need to select 2

Assignment on Nutrition - Q1. Task: You need to select 2 different age groups of your choice. You will need to plan balanced meals with snacks for a day. Once you have laid out the meal plan you need to: Explain why the ...

Question - gene cloning a please write the steps to clone

Question - Gene Cloning a) Please write the steps to clone the protease gene from Bacillus strain whose genome sequence is not known. b) Express the protease gene to obtain the enzyme in high yield, please plan your prot ...

Instructions address each question below as it relates to

Instructions: Address each question below as it relates to the caw study given. A patient was brought to the Emergency Department by ambulance with two arrow wounds. One arrow is still in the patient on the left side; en ...

Use of molecular tools and bioinforrnatics in the diagnosis

Use of Molecular Tools and Bioinforrnatics in the Diagnosis Characterization of Enteric Pathogens from a Case Study Purpose: The purpose of this project is to familiarize the student with modern molecular tools and bioin ...

Experiment 1 staining video1 open the media player by

Experiment 1: Staining Video 1. Open the Media Player by clicking on the film-strip button in the lower left of the lab's window frame, as shown below. The Media Player is a repository of images, videos, saved snapshots, ...

Chosen dr jan nolta- stem cell researcher head of uc davis

Chosen Dr. Jan Nolta- Stem Cell Researcher Head of UC Davis Stem Cell Program Director Topic Background: early Stem cells have the ability to develop into many different types of cells. Stem Cell Research is not without ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As