Ask Biology Expert

Uterine infections


Uterine bacterial contamination compromises uterine functions. Initially, the uterus is contaminated with a wide range of bacteria, but this is not consistently associated with uterine disease. Involution of the genital tract after parturition helps reduce uterine infection. In normal cattle the cervix opens after 1 week. Discharge of lochia persists until 15to 20 days post-partum. The size of uterine horns diminishes rapidly to 3-4 cm by a month post-partum, but uterine involution continues for a further period of 10-20 days post-partum. During the course of uterine involution, the uterus produces ProstaglandinF2á in large quantities which enhances uterine immune functions besides increasing uterine motility to help the uterus resolve uterine infections. Hence, the development of uterine disease depends on the immune response of the animal as well  as the species of bacteria and their number. It is not unusual to find bacteria from uterine cultures upto two weeks post-partum and in most cases bacterial elimination is completed by about 5 weeks. Persistence of pathogenic micro-organisms in the uterus leads to uterine disease which is a key cause of infertility in cows and buffaloes postpartum. Presence of pathogenic bacterial infection leads to uterine inflammation, endometrial histological lesions, delay in uterine involution and early embryonic death. Uterine infections or bacterial products also prevent follicular development and ovulation by suppression of LH release. Thus persistence of uterine infections will ultimately increase the length of occurrence of first postpartum estrus and hence increase the interval from parturition to conception (service period). Culling of animals not returning to heat postpartum or exhibiting poor conception rates due to uterine disease is not uncommon. It is therefore imperative to ensure that animals suffering from uterine infections are rapidly treated thus allowing the normal process of involution to be completed which is very essential for the next breeding period to commence.


Several terminologies were coined to uterine infections. It is important to delineate the differences among them. Puerperal mastitis can be defined as a condition occurring early postpartum (within 3 weeks) wherein the uterus becomes abnormally large with a foetid watery brown discharge and the animal suffers from fever, produces less milk and is also associated with a sluggish behavior. An animal that is not systemically ill, but has an enlarged uterus and shows a purulent vaginal discharge within 21 days post-partum is classified as a clinical metritis case. Clinical endometritis is characterized by the presence of purulent (> 50% pus) uterine discharge detectable in the vagina 21 days or more after parturition, or muco-purulent (approximately 50% pus, 50% mucus) discharge detectable in the vaginal after 26 days post-partum. In the absence of clinical endometritis, a cow with subclinical endometritis is defined by >18% neutrophils in uterine cytology samples collected 21-33 days postpartum, or 10% neutrophils at 34 to 47 days. The consequences of endometritis on subsequent fertility are manifold as evident by the significant increase in the service period. It affects on fertility by two ways. As a short term impact, there is extension of calving to conception interval which varies from 12 to 31 days as reported by different workers. Also associated is an increase in the number of services required per conception. Endometritis can cause irreversible changes in the genital tract in long term resulting permanent impairment of fertility. This factor causes higher culling rates with increased replacement costs and loss of freedom to cull for other factors such as low production resulting in higher culling of genetically superior animals. Culling rates from an average of 5 % for the organized herd in general to around 20 % have been recorded due to animals suffering from metritis and endometritis. Although endometritis is often a self limiting disease with recovery occurring after subsequent estrous cycles, early diagnosis and treatment is recommended to avoid exaggeration of the condition leading to adverse effects on future fertility of the animal. Among various methods of diagnosis, rectal palpation of the uterus is probably the most commonly employed method, but it may be the most insensitive and non-specific method available. Examination of the  vagina with a speculum, culture of uterine fluids and evaluation of uterine biopsies are the techniques available for diagnosing uterine infections. Among recent techniques available for diagnosis are peripheral blood haptoglobins, serum amyloid-A and increased enzymatic activity of alkaline phosphatase in uterine flushing of buffaloes and by ultrasonography. Most important predisposing factors for postpartum endometritis are dystocia, retained foetal membranes, unsanitary calving condition and ketosis. Ninety five percent buffaloes suffer from uterine infection after dystocia. Eighty seven percent buffaloes having prolapse of genitalia have been reported to suffer uterine infections. It has been reported that 64 % animals with retained fetal membranes developed endometritis. Physical damage caused to the endometrium by manual removal of the fetal membranes may be a predisposing factor for chronic endometritis. Endometritis, unlike metritis does not affect the general health of the animal, although it does have a profound effect on fertility.


Pyometra is defined as the accumulation of purulent material within the lumen of uterus in the presence of a persistent corpus luteum and a closed cervix. Progesterone plays a permissive role in the onset of pyometra, which usually develops coincidentally with luteal function during the postpartum period. It is generally believed that potentially pathogenic bacteria enter the uterus during or after calving. Cows with assisted births and cows in which retained fetal membranes are manually removed are the causes of contamination. In pyometra cases the introduced bacteria reside in the uterus without apparently proliferating into infection until progesterone production either from the developing corpus luteum or adrenals increases and suppresses uterine immune functions. The bacteria are then able to proliferate and produce the signs of infection. Pyometra usually persists until luteolysis, when the immunosuppressive progesterone block is removed and the uterine immune defenses are strong enough to resolve the infection. The annual incidences of uterine infections in postpartum animals range from 10 to 50% in dairy cattle and 20 to 75 % in dairy buffaloes. These are however, rough estimates. The real incidence of uterine infections in dairy animals is not known because detection and diagnosis are often inaccurate and most postpartum animals are not evaluated for signs of uterine infections. Also, uterine infections are not considered contagious such as in the case of brucellosis thus reporting of uterine infections is not considered absolutely essential. No single therapy can guarantee absolute success in treatment of uterine infections.


However, our current day knowledge has yielded a hypothesis that administration of prostaglandin F2á and possibly other eicosanoids such as leukotriene B4 (LTB4) can enhance uterine immune defenses and mitigate the immunosuppressive effects of progesterone. Intramuscular injection of prostaglandin F2á is therefore an efficacious treatment for uterine infections principally in pyometra cases although its efficacy in treatment of other cases of uterine infections is inconsistent. Hence, use of intrauterine antimicrobials (antibiotics) is recommended. However, genuine concerns on the long term effects of antibiotic use and their potential for creating antibiotic resistant strains of bacteria have focused research on developing non-antibiotic methods for enhancing host immunity and preventing or resolving uterine infections.

Biology, Academics

  • Category:- Biology
  • Reference No.:- M9507886

Have any Question?


Related Questions in Biology

Case study question -case study - mary 21 years old

Case Study Question - Case Study - Mary, 21 years old, presented to the hospital emergency department with an infected laceration on her left foot. Mary was at a beach resort four days ago, when she trod on a broken glas ...

Assignment -the upper-case blue letters are the 14th exon

Assignment - The upper-case, blue letters are the 14th exon (of 20) in the Hephl1 gene in mice. The lower-case (black) letters are from the flanking introns.  The highlighted bases indicate primers that may be used to ge ...

Question - a pure strain of mendels peas dominant for all

Question - A pure strain of mendel's peas, dominant for all seven of his independently assorting genes, was testcrossed. How many different kinds of gametes could the F1 PRODUCE?

Igfbp2 rbp4 and factor d post bariatric surgeryigfbp2 what

IGFBP2/ RBP4 and Factor D Post Bariatric Surgery IGFBP2 ( what the normal physiological action in the body? And how it affectedby obesity? andpost bariatric surgery?) RBP4 (what the normal physiological action in the bod ...

Assignment on nutrition - q1 task you need to select 2

Assignment on Nutrition - Q1. Task: You need to select 2 different age groups of your choice. You will need to plan balanced meals with snacks for a day. Once you have laid out the meal plan you need to: Explain why the ...

Question - gene cloning a please write the steps to clone

Question - Gene Cloning a) Please write the steps to clone the protease gene from Bacillus strain whose genome sequence is not known. b) Express the protease gene to obtain the enzyme in high yield, please plan your prot ...

Instructions address each question below as it relates to

Instructions: Address each question below as it relates to the caw study given. A patient was brought to the Emergency Department by ambulance with two arrow wounds. One arrow is still in the patient on the left side; en ...

Use of molecular tools and bioinforrnatics in the diagnosis

Use of Molecular Tools and Bioinforrnatics in the Diagnosis Characterization of Enteric Pathogens from a Case Study Purpose: The purpose of this project is to familiarize the student with modern molecular tools and bioin ...

Experiment 1 staining video1 open the media player by

Experiment 1: Staining Video 1. Open the Media Player by clicking on the film-strip button in the lower left of the lab's window frame, as shown below. The Media Player is a repository of images, videos, saved snapshots, ...

Chosen dr jan nolta- stem cell researcher head of uc davis

Chosen Dr. Jan Nolta- Stem Cell Researcher Head of UC Davis Stem Cell Program Director Topic Background: early Stem cells have the ability to develop into many different types of cells. Stem Cell Research is not without ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As