+61-413 786 465

[email protected]

## Engineering

 Civil Engineering Chemical Engineering Electrical & Electronics Mechanical Engineering Computer Engineering Engineering Mathematics MATLAB Other Engineering Digital Electronics Biochemical & Biotechnology

Assignment: Isolation and Fault Detection for Lateral Flight of an UAV

Introduction:

Fault tolerance is very significant for aircraft flight control.  The majority of the faults take place in the actuators and sensors onboard the aircraft.  Once a fault has occurred the aircraft could become uncontrollable and be hazardous to passengers and crew.  This assignment is to examine the effects of sensor faults on the lateral dynamics of an Unmanned Aerial Vehicle.

Background
Lateral Dynamics

The Lateral Dynamics of any aircraft are defined in terms of the Body-fixed velocities and corresponding Earth-fixed orientation (see Figure).

In this specific case the velocities are roll rate (p) and yaw rate (r).  All other Body-fixed dynamics are regarded as constant (e.g. surge velocity) or zero.  The effects of such velocities on to the initially fixed Earth-fixed axes are represented through the orientation of the aircraft.

These are the roll angle (φ) and yaw angle (ψ).  In addition, the affect of sideslip on the aircraft is included in the form of the sideslip angle (β).

The corresponding inputs to the lateral dynamics of the aircraft are the aileron deflection (δa) and the rudder deflection (δr).  The ailerons control the roll motion and the rudder controls the heading or yaw. The Lateral Dynamics of an UAV can be represented by the following differential equations:

Here the translational velocities are find outd in m/s, rotational velocities in rad/s and the angles in radians.  The constant value for the surge velocity is taken to be U0 = 30 m/s.

In addition to the flight dynamics, this aircraft representation also consists of the dynamics of the aileron and rudder actuators.  Both actuators have a maximum amplitude deflection of 25 degrees and a maximum rate limit of 5 degrees/second.

Faults in Lateral Dynamics

The faults in the Lateral Dynamics of an aircraft can be either multiplicative or additive. The multiplicative faults occur in the dynamics of the aircraft and can be caused by changes to the aircraft itself throughout flight.   These types of faults are not considered here. Instead, additive faults caused by the sensors in the system will be the main focus of this assignment.  In particular faults which occur on the heading channel which are added to the sensed dynamics from the aircraft shall be the subject of this study.

Problem Specification

The following stages are expected to be performed in this assignment:

problem1.  Construct a continuous time simulation of the Lateral Dynamics of the UAV using zero initial conditions.

problem2.  Simulate a suitable man oeuvre where changes in heading can be observed (e.g. zig-zag).

problem3.  Simulate three separate stepwise faults in the heading channel of magnitudes 2, 5 and 10 degrees.

problem4.  Simulate a separate drift wise fault in the heading channel.

problem5.  Analyses the effect of these separate faults.

problem6.  Using a suitable limit checking method, detect these faults in the system.

problem7.  Using a suitable fault diagnosis method, diagnose these faults.

problem8.  Repeat this investigation with simulated white noise of amplitude ±5degree included in the heading output of the system.

problem9.  describe how the FDI system has to be altered to accommodate the existence of noise.

problem10. Comment on the influence of the faults and the FDI system on the Lateral Dynamics if a heading control system was employed.

Mechanical Engineering, Engineering

• Category:- Mechanical Engineering
• Reference No.:- M9547

Have any Question?

## Related Questions in Mechanical Engineering

### The aim of the project is to demonstrate certain aspects of

The aim of the project is to demonstrate certain aspects of engineering materials in different applications. The projects will be assessed on the basis of a written Research Report. The report should clearly show what yo ...

### Expansion processes of a perfect gasassignment1 attend the

Expansion Processes of a Perfect Gas Assignment: 1. Attend the laboratory class and complete the lab tests according to the supervisor's requirement. Students will not allowed to submit their report if they do not come t ...

### 5star questions amp answers1a define heat treatment bname

5 STAR QUESTIONS & Answers 1. A) Define Heat treatment B) Name different types of heat treatment processes C) Write any 4 purposes of Heat treatment 2. Explain various Heat treatment processes 3. A) Compare Thermo plasti ...

### Projectflow processing of liquor in a mineral refining

Project Flow Processing of Liquor in a Mineral Refining Plant The aim of this project is to design a flow processing system of liquor (slurry) in a mineral (aluminum) refining plant. Aluminum is manufactured in two phase ...

### Heat transfer and combustionyou will need graph paper a

HEAT TRANSFER AND COMBUSTION You will need graph paper, a calculator, a copy of Appendix 1 from lesson HTC - 4 - 2 and access to steam tables to answer this TMA. 1. A fuel gas consists of 75% butane (C 4 H 10 ), 10% prop ...

### Assignment -q1 explain the difference between the

Assignment - Q1. Explain the difference between the metacentric height of a ship during 'Partially Afloat condition and 'Free Floating' condition; aid a sketch to support your answer. Q2. With the aid of sketches, explai ...

### Assignment - machine learning for signal processingproblem

Assignment - Machine Learning for Signal Processing Problem 1: Instantaneous Source Separation 1. As you might have noticed from my long hair, I've got a rock spirit. However, for this homework I dabbled to compose a pie ...

### Question - truss structureconsider the three membered

Question - Truss Structure Consider the three membered planar truss structure shown in the figure below. All members of the truss have identical square cross-sectional area (A) of 25 mm x 25 mm, and Youngs Modulus (E) = ...

### Force exerted by jet on moving cart1 you need to determine

Force Exerted By Jet On Moving cart. 1. You need to determine the velocity of water that comes out from the nozzle of this system. need the equation please formulate the equation. 2. This water will strike a small cart a ...

### Alocate ten minutes for the presentationuse audio visual

Allocate ten minutes for the presentation Use audio / visual / technological supports / aids where appropriate Use a minimum of 3 properly referenced articles. THEMES PRESENTATION TOPIC MEMORY Discuss the three learning ...

• 13,132 Experts

## Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

### Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

### Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

### Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of \$ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

### Compute the present value of an 1150 payment made in ten

Compute the present value of an \$1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

### Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of \$ 699 per year for 19 years, given a discount rate of 6 percent per annum. As