Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Mechanical Engineering Expert

The given figure depicts an indirectly fired gas turbine engine. In the gas turbine engine, air is compressed to a high pressure and then heat is added. The high pressure, high temperature air is then expanded during a turbine with power being extracted. To a first estimate, the compressor and turbine may be treated as adiabatic. In a typical gas turbine, the fuel is added to the air and combusted and it is really the combustion products that pass during the turbine. In the obliquely fired turbine, as is used in this problem, the air is heated with a heat exchanger which allows heat sources that could or else not be used (e.g. solar, coal, etc.). The net work out of the gas turbine engine is the work out of the turbine less the work into the compressor. In a real engine these devices are generally all coupled on a common shaft.

Since the work of compression decreases the total work out, anything you can do to decrease the compression work will increase the net work out. One way to do that is to cool the air being compressed. The attached diagram shows a proposed system where the compression is divided into two stages and liquid water is sprayed into the air to cool it between the two stages. It is proposed that this approach may increase power output and increase efficiency. Your task is to determine if this approach is thermodynamically feasible. You may neglect the pressure drops between components and within the heat exchanger and you can neglect kinetic energy. The subsequent design parameters are provided. For these design parameters, evaluate the effect of the water spray on efficiency (net work out divided by heat input) and net power out per kg/s of dry air coming into the turbine. Do this for a range of water spray inputs from 0 up to the amount needed to achieve 70% relative humidity at point

3.

Point 1

T= _20C______

P= _0.85 bar______

O = __50%_____

Point 2

P= __3.5 bar_____

Point 3

P= ___10.0 bar_____

Point 4

T=__1220K_______

Point 5

P= P1

Compressor A: ηisen = __0.87___ Compressor B: ηisen = _0.83____ Compressor C: ηisen = __0.93

180_Evaluate the effect of the water spray on efficiency.png

Mechanical Engineering, Engineering

  • Category:- Mechanical Engineering
  • Reference No.:- M9720908
  • Price:- $50

Priced at Now at $50, Verified Solution

Have any Question?


Related Questions in Mechanical Engineering

Heat transfer and combustionyou will need graph paper a

HEAT TRANSFER AND COMBUSTION You will need graph paper, a calculator, a copy of Appendix 1 from lesson HTC - 4 - 2 and access to steam tables to answer this TMA. 1. A fuel gas consists of 75% butane (C 4 H 10 ), 10% prop ...

Assignment - machine learning for signal processingproblem

Assignment - Machine Learning for Signal Processing Problem 1: Instantaneous Source Separation 1. As you might have noticed from my long hair, I've got a rock spirit. However, for this homework I dabbled to compose a pie ...

Questions -q1 a qualitative estimate of the effect of a

Questions - Q1. A qualitative estimate of the effect of a wind-tunnel contraction (Figure) on turbulent motion can be obtained by assuming that the angular momentum of eddies does not change through the contraction. Let ...

Alocate ten minutes for the presentationuse audio visual

Allocate ten minutes for the presentation Use audio / visual / technological supports / aids where appropriate Use a minimum of 3 properly referenced articles. THEMES PRESENTATION TOPIC MEMORY Discuss the three learning ...

Fluid mechanics assignment - finite control volume analysis

Fluid Mechanics Assignment - Finite Control Volume Analysis and Dimensional Analysis Q1. The wind blows through a 7ft × 10ft garage door opening with a speed of 5 ft/s as shown in the figure. Determine the average speed, ...

Life cycle assessmentfor your chosen service eg white board

LIFE CYCLE ASSESSMENT For your chosen service (e.g. white board markers), identify two alternatives of getting the service (e.g. brand A, brand B). Choose the most environmentally friendly option by conducting life cycle ...

Materials behaviour from atoms to bridges assignment -

Materials Behaviour from Atoms to Bridges Assignment - Distributed loads and static equilibrium (Please note: you should show your steps with necessary figures) Q1. Two beam sections are jointed at C and supported at A b ...

Mechanical engineering assignment task - solve the given

Mechanical Engineering Assignment Task - Solve the given problem. Task 1 - A spring with a one-turn loop of 40mm mean radius is formed from a round section of wire having 5 mm diameter. The straight tangential legs of th ...

Structural mechanics questions -q1 a 150-lb bucket is

Structural Mechanics Questions - Q1. A 150-lb bucket is suspended from a cable on the wooden frame. Determine the resultant internal loadings on the cross section at D, and at E. Q2. The shaft is supported at its ends by ...

Question - truss structureconsider the three membered

Question - Truss Structure Consider the three membered planar truss structure shown in the figure below. All members of the truss have identical square cross-sectional area (A) of 25 mm x 25 mm, and Youngs Modulus (E) = ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As