Ask Biology Expert

Steps of C dna amplification

1.  Smart-pcr amplification of cdna is the technique which initiates with the change of mrna to cdna utilizing mmlv-rt, mutated in the rnase h domain, in the first strand synthesis reaction. This enzyme owns reverse transcriptase activity, dna-dependent dna polymerase activity and terminal deoxynucleotidyl transferase (tdt) activity. In first strand synthesis, an anchored oligo-d(t)  primer (3' cdna synthesis primer) anneals to the 5'end of poly(a) tails. The 5'-end of this 3' cdna synthesis primer includes a defined sequence that gives as a pcr primer target site in the corresponding amplification step. When the first strand has been elongated to the end of an mrna template, the tdt action of the reverse transcriptase adds various un-templated deoxycytosine (d(c)) residues at the 3'-end of first strand cdnas (in a fashion similar to the addition of single un-templated d(a) residues to the end of pcr products produced with taq dna polymerase). The 5'cdna synthesis primer includes three guanosine residues at its 3' end that anneal to these un-templated d(c) "tails"

And then provides as a template for the dna-dependent dna polymerase activity of the mmlv-rt. This "switching mechanism at rna termini" (smart) permit for mmlv-rt-mediated 3'-extension of all first strand cdna products to inolve a defined, contiguous sequence imitated from the 5'cdna synthesis primer. The terminal transferase and template switching activities takes place during the first strand cdna synthesis. Areas of sequence in the 5'cdna synthesis primer and the 3'cdna synthesis primer are similar, permitting for uniform amplification of all first strand cdna with single pcr primer.

2.   ssh-pcr depends on principles of dna hybridization. Cdnas made from the two mrna populations being compared are firstly digested with a four base cutting restriction enzyme to create short blunt-ended fragments which are more encouraging to the suppressive pcr activity. One of the cdna populations which is assumed to include an overrepresentation of few unknown genes, is signified as "tester". The tester cdna is divided to two aliquots and each one is ligated to a different adaptor. The other cdna population is signified as "driver" and is mixed with two adaptor-ligated tester cdnas independently. The two mixtures are permitted to undergo denaturation and renaturation. In these complexes, the driver is in surplus and hybridizations do not go to finishing point. Sequences over-represented in the tester cdna pool will remain single stranded and sequences common to both tester and driver reanneal as they nucleate more often because of their higher relative concentrations. In second hybridization step, the single stranded tester sequences left in the first two hybridization mixes, which bear dissimilar adaptor sequences at their ends, are permitted to fully re-anneal in the presence of additional denatured driver cdna. In second hybridization, there is again subtraction of sequences ordinary to both tester and driver cdnas. As these hybridizations go for completion, single stranded fragments exclusive to the tester cdna create hybrid molecules with different adaptor sequences at either end.

The complete population of molecules is then exposed to two rounds of pcr to selectively augment the differentially expressed sequences. Before the first pcr, adapter ends are filled in, therefore creating the complementary primer binding sites required for amplification. Double stranded molecules including only one adaptor-ligated strand (rising from adaptor-ligated sequence annealing to driver cdna is only linearly amplified. Reannealed driver cdnas are not augmented type a and d molecules lack primer annealing sites and are not amplified. Exponential amplification is preferred by molecules with diverse adaptor sequences are either end arising from tester cdna population.

Differentially expressed sequences are highly enriched in type e fraction, and thus in the subtracted cdna pool. This technique does not involve any kind of physical separation of single-stranded molecules from double-stranded hybrids.

Biology, Academics

  • Category:- Biology
  • Reference No.:- M9526471

Have any Question?


Related Questions in Biology

Case study question -case study - mary 21 years old

Case Study Question - Case Study - Mary, 21 years old, presented to the hospital emergency department with an infected laceration on her left foot. Mary was at a beach resort four days ago, when she trod on a broken glas ...

Assignment -the upper-case blue letters are the 14th exon

Assignment - The upper-case, blue letters are the 14th exon (of 20) in the Hephl1 gene in mice. The lower-case (black) letters are from the flanking introns.  The highlighted bases indicate primers that may be used to ge ...

Question - a pure strain of mendels peas dominant for all

Question - A pure strain of mendel's peas, dominant for all seven of his independently assorting genes, was testcrossed. How many different kinds of gametes could the F1 PRODUCE?

Igfbp2 rbp4 and factor d post bariatric surgeryigfbp2 what

IGFBP2/ RBP4 and Factor D Post Bariatric Surgery IGFBP2 ( what the normal physiological action in the body? And how it affectedby obesity? andpost bariatric surgery?) RBP4 (what the normal physiological action in the bod ...

Assignment on nutrition - q1 task you need to select 2

Assignment on Nutrition - Q1. Task: You need to select 2 different age groups of your choice. You will need to plan balanced meals with snacks for a day. Once you have laid out the meal plan you need to: Explain why the ...

Question - gene cloning a please write the steps to clone

Question - Gene Cloning a) Please write the steps to clone the protease gene from Bacillus strain whose genome sequence is not known. b) Express the protease gene to obtain the enzyme in high yield, please plan your prot ...

Instructions address each question below as it relates to

Instructions: Address each question below as it relates to the caw study given. A patient was brought to the Emergency Department by ambulance with two arrow wounds. One arrow is still in the patient on the left side; en ...

Use of molecular tools and bioinforrnatics in the diagnosis

Use of Molecular Tools and Bioinforrnatics in the Diagnosis Characterization of Enteric Pathogens from a Case Study Purpose: The purpose of this project is to familiarize the student with modern molecular tools and bioin ...

Experiment 1 staining video1 open the media player by

Experiment 1: Staining Video 1. Open the Media Player by clicking on the film-strip button in the lower left of the lab's window frame, as shown below. The Media Player is a repository of images, videos, saved snapshots, ...

Chosen dr jan nolta- stem cell researcher head of uc davis

Chosen Dr. Jan Nolta- Stem Cell Researcher Head of UC Davis Stem Cell Program Director Topic Background: early Stem cells have the ability to develop into many different types of cells. Stem Cell Research is not without ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As