Ask Mechanical Engineering Expert

Flywheels

The aim of this demonstration is to become familiar with the derivation of material indexes in general and for the selection of the optimal material for flywheels in particular.

We willobserve the failure of a flywheel (made of 'blu-tack') and translate the design requirements for a flywheel into material indexes.

Governing Equations

Flywheels store kinetic energy and are finding new application in regenerative braking systems.

We assume the flywheel can be approximated by a disk and so we can write the following for the stored kinetic energy in Joules:

807_Regenerative braking systems.png                                                                                                                                                (1)

Where r is the density in kg/m3, R is the flywheel radius in m, t is the flywheel thickness in m and w is the angular velocity in radians per second.

The volume of the disk is: 1233_Regenerative braking systems1.png, so the mass is simply: 2258_Regenerative braking systems2.png

As the flywheel spins it generates a centrifugal stress, the maximum value of which can be approximated by:

2099_Regenerative braking systems3.png                                                                                                                                        (2)

The faster the flywheel spins, the higher the stored kinetic energy and the higher the internal stress. The same holds for density, the more dense the material, the higher the stored energy but also the higher the internal stress. The question is: what is the best material to use for a flywheel?

Questions

1. Convert Equation 2 to an expression in terms of rpm instead of rad/s. Rearrange the equation to give the maximum rpm that can be applied without failure for a material with yield stress sy.

2. Estimate the yielding stress of your blu-tack using a circular cross-section sample and weights/scales. Report three measurements.

3. Assume the density of blu-tack is ~2500 kg/m3 (check this if you have time) and use your equation to estimate the maximum rpm we can expect for a disk of radius R=_____________ mm.

4. Roll out a sheet of blu-tack, punch out a disk with your specified radius, assemble a flywheel for testing on an electric drill and determine the approximate critical rotation speed in rpm. Comment on the outcome.

5. Derive the material index for a light flywheel that stores the most energy per unit mass and that does not yield when spinning. The rotation speed (angular velocity) and geometry do not matter. Identify the constraint, the objective and the free variables. (Hint: establish the energy per unit mass, then eliminate the free variables). Use the relevant chart or the CES software to establish an optimal material - provide a few sentences of explanation.

6. Ignoring the chance of failure and the weight, derive a material index for a flywheel that stores the most energy per unit volume. Use the relevant chart or the CES software to establish an optimal material - provide a few sentences of explanation.

Mechanical Engineering, Engineering

  • Category:- Mechanical Engineering
  • Reference No.:- M9355157
  • Price:- $70

Priced at Now at $70, Verified Solution

Have any Question?


Related Questions in Mechanical Engineering

The aim of the project is to demonstrate certain aspects of

The aim of the project is to demonstrate certain aspects of engineering materials in different applications. The projects will be assessed on the basis of a written Research Report. The report should clearly show what yo ...

Force exerted by jet on moving cart1 you need to determine

Force Exerted By Jet On Moving cart. 1. You need to determine the velocity of water that comes out from the nozzle of this system. need the equation please formulate the equation. 2. This water will strike a small cart a ...

Mechanical engineering assignment task - solve the given

Mechanical Engineering Assignment Task - Solve the given problem. Task 1 - A spring with a one-turn loop of 40mm mean radius is formed from a round section of wire having 5 mm diameter. The straight tangential legs of th ...

Projectflow processing of liquor in a mineral refining

Project Flow Processing of Liquor in a Mineral Refining Plant The aim of this project is to design a flow processing system of liquor (slurry) in a mineral (aluminum) refining plant. Aluminum is manufactured in two phase ...

Heat transfer and combustionyou will need graph paper a

HEAT TRANSFER AND COMBUSTION You will need graph paper, a calculator, a copy of Appendix 1 from lesson HTC - 4 - 2 and access to steam tables to answer this TMA. 1. A fuel gas consists of 75% butane (C 4 H 10 ), 10% prop ...

Assignment -q1 explain the difference between the

Assignment - Q1. Explain the difference between the metacentric height of a ship during 'Partially Afloat condition and 'Free Floating' condition; aid a sketch to support your answer. Q2. With the aid of sketches, explai ...

Materials behaviour from atoms to bridges assignment -

Materials Behaviour from Atoms to Bridges Assignment - Distributed loads and static equilibrium (Please note: you should show your steps with necessary figures) Q1. Two beam sections are jointed at C and supported at A b ...

Questions -q1 a qualitative estimate of the effect of a

Questions - Q1. A qualitative estimate of the effect of a wind-tunnel contraction (Figure) on turbulent motion can be obtained by assuming that the angular momentum of eddies does not change through the contraction. Let ...

Assignment - machine learning for signal processingproblem

Assignment - Machine Learning for Signal Processing Problem 1: Instantaneous Source Separation 1. As you might have noticed from my long hair, I've got a rock spirit. However, for this homework I dabbled to compose a pie ...

Problem -a long pipe od 1413 mm id 1318 mm kp 20 wmk

Problem - A long pipe (OD = 141.3 mm, ID =131.8 mm, k p = 20 W/m.K) supplies hot pressurized liquid water at 400 K to a heater in a factory. The pipe has an insulation thickness of 100 mm. A new efficient heater replaces ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As