Ask Electrical & Electronics Expert

Q. Explain the block diagrtam of D.C. voltmeter with direct coupled amplifier.

Sol. D.C, voltmeter with direct coupled Amplifier

        The D.C. electronic voltmeters consist of an ordinary D.C. meter movement preceded by a D,C, amplifier of one or more stages. When a very high input resistance is required it is convenient to use an FET at the input stage. The output of the FET can usually be directly coupled to the input of a BJT.

        Direct coupled amplifiers are normally used in low priced D.C. amplifier. Bipolar transistor Q2 along with resistors forms a balanced bridge circuit FET. Q1 serves as a source follower and is used to provide impedance transformation between the input and base of Q2.  The bias on Q2 such that i= i3 when the input voltage Vin = 0 under that condition Vx =Vy, so that no current flow through the meter movement that is i4 = 0. The bias on Q2 is controlled by input voltage Vin thus when an unknown input which cause V1 to increase. Since Vx become greater than Vy, current i4 is no longer zero. The magnitude of this current, hence the deflection of the meter is proportional to Vin.

        The value of Vin. That cause maximum meter deflection is the basic range of the instrument. This is generally the lowest range on the range switch in non-amplified models. High range can be obtained by using an input attenuator and lower ranges can be obtained by a preamplifier.

       The input attenuator in fig (A) is a calibrate front panel control in the form of resistance voltage divider. The full scale voltage appears across the divider so that the voltage at each tap is a progressively lower fraction of the full input voltage.

      Bridge balance is obtained by adjustment the zero set potentiometer when VIN is zero full scale calibration is obtained by adjusting the potentiometer marked calibration in series with the ammeter.

     The advantages of this meter are

(1)           It decreases the amount of power drawn from the circuit under test by increasing the input impedance using an amplifier with unity gain.

(2)           The source follower drives am emitter follower. This combination is capable of thousand fold or more increases impedance while maintaining a voltage gain of nearly one.

(3)           The input impedance of this meter is 10?, which require a power of .025 µW for a 0.5 V deflection as compared to 25 µ W for an unamplifid meter thereby giving an increased sensitivity of 100 times.

A block diagram of a meter used for measurement of small voltage and currents is shown. The input voltage is amplified and applied to a increased by a like amount. A D.C -coupled amplifier that is an amplifier with no coupling capacitors and having a well controlled D.C, gain, is used to provide dot necessary amplification. An amplifier capable of a fixed DC gain of 10 is not difficult to construct and to keep stable. A simple op-amp plus the required feedback components will do a suitable job for this application.

 DC gains of much more than 10 are required to use a standard D Arsonval meter movement to measure very small currents and voltages such as microvolt and nanoampere. To amplify nano ampere to drive a milliampere meter require a gain of 106. This requires an op amp and two resistor and a simple circuit. However when gains this large are desired, all the defects of an operational amplifier become significant offset current, offset voltage and biases current become so troublesome that it is practically impossible to achieve acceptable performance with a standard op amp. Many of these defects can be reduced or eliminated by the use of trim adjustments accessible from the front panel in a similar fashion as the calibrate and zero function discussed above.

Electrical & Electronics, Engineering

  • Category:- Electrical & Electronics
  • Reference No.:- M9504285

Have any Question?


Related Questions in Electrical & Electronics

Question 1for the ce amplifier in figure 1 given the

Question 1 For the CE amplifier in Figure (1), given the following component parameters: Parameter Value β DC , β AC 150 V BE 0 . 7 V V CC 12 V R C 820 ? R E 1 100 ? R E 2 220 ? R 1 20 k? R 2 5 . 2 k? R L 100 k? C 1 , C ...

Question -i a star-connected three-phase synchronous

Question - (i) A star-connected, three-phase synchronous induction motor takes a current of 10 amps from a 415 volt supply at unity power factor when supplying a steady load. If the synchronous reactance is 5 ohms/phase ...

1 a name the three major groups of contamination and

1. (a) Name the three major groups of contamination and briefly describe their physical characteristics. (b) Where do the above contamination types come from? Give one example of each. 2. Name two processes metrics which ...

Question 1 in the voltage regulator circuit in figure p221

Question 1: In the voltage regulator circuit in Figure P2.21, V 1 = 20 V, V Z = 10 V, R i = 222Ω and P z (max) = 400 mW. (a) Determine I L, I z , and I L , if R L = 380Ω. (b) Determine the value of R L , that will establ ...

Summative assessmentin 2017 sej101 assessment will consist

Summative Assessment In 2017 SEJ101 assessment will consist of nine tasks that will develop a portfolio of your assessed work. Throughout the trimester you will have the opportunity for feedback on all nine tasks before ...

1 a name the three major groups of contamination and

1. (a) Name the three major groups of contamination and briefly describe their physical characteristics. (b) Where do the above contamination types come from? Give one example of each. 2. Name two processes metrics which ...

1 a name the three major groups of contamination and

1. (a) Name the three major groups of contamination and briefly describe their physical characteristics. (b) Where do the above contamination types come from? Give one example of each. 2. Name two processes metrics which ...

Case studythis assignment consists of a written report of

CASE STUDY This assignment consists of a written report of approximately 1000 words and any diagrams in which you are asked to critically compare different process methods used to achieve the same result and show an awar ...

Problem 1 a two-phase servomotor has rated voltage applied

Problem 1: A two-phase servomotor has rated voltage applied to its excitation winding. The torque speed characteristic of the motor with Vc = 220 V, 60 Hz applied to its control phase winding is shown in Fig.1. The momen ...

Electrical engineering questions -q1 two ideal voltage

Electrical Engineering Questions - Q1. Two ideal voltage sources designated as machines 1 and 2 are connected, as shown in the figure below. Given E 1 = 65∠0 o V, E 2 = 65∠30 o V, Z = 3Ω. Determine if Machine 1 is genera ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As