Ask Mechanical Engineering Expert

Problem Solving Task - Time Response and Controller Design

Please provide your solutions to the below questions. Show all work and present your work logically, justifying all assumptions. The questions marked with an asterisk (*) include a MATLAB component.

Exercise 1: Reduction of subsystems

Find the transfer function T (s) = C(S)/C(R) of the block diagram in Figure given that:

G1 = 2/(s+2), G2 = 1/s, G3 = 5

G4 = ((s+5)/(s+3)(s+10)), G5 = 2, G6 = s, G7 = 5/s

2380_Fig1.png

Also, write a MATLAB script using feedback, series and parallel commands and confirm that your handwritten answer and MATLAB agree.

Exercise 2: What's the damping?

Consider the motor/load feedback control system shown in Figure 2 below. The load damping DL is unknown, but when R(s) is a step, the response of θL has an overshoot of 20%. Do the following:

a) Find the transfer function θL(s)/R(s) (you'll have a DL in your equation since you don't know it yet)

b) Calculate the damping ratio that corresponds to 20% overshoot

c) Find DL using the information from a and b).

2290_Fig2.png

Exercise 3: A proportional controller

For the velocity control system in Figure 3:

a) Find the closed-loop transfer function T(s) = c(s)/R(s).

b) Find a value of Kp that will yield less than 10% overshoot for the closed-loop system. (Note: ignore the zero dynamics to calculate Kp initially).

c) Is the second order component of the closed-loop system dominant?

d) What is the magnitude of step input that will give a steady-state velocity of c(∞) = 50 m/s?

e) Using your Kp from part b), write a MATLAB script that calculates the closed-loop transfer function, T(s) = c(s)/R(s).

f) Simulate the step response of T(s). Is the overshoot 10% as you designed? Discuss.

126_Fig3.png

Exercise 4: Linearization of a vehicle moving through air

Consider the simple model of a vehicle moving through air

mv· = F - kv2

where v is the velocity of the vehicle, F is the forward traction force, and k is a drag parameter that depends on the properties of the air and the geometry of the vehicle. The parameters are m = 1000kg and k = 10N·s2/m2. Do the following:

a) Linearize the model about the steady-state F- = 1000N.

b) Find the transfer function v'(s)/F'(s) for the linearized system in a)

c) Consider a vehicle that is at the steady-state you found in a). A step change in the traction force is introduced, F'(s) = 200/s. Use your transfer function model to predict time response of the velocity v(t).

Exercise 5: Stability

Consider a unity feedback (H(s) = 1) configuration Figure 4. For the following systems, determine the range of K that will maintain stability.

(a) Gc(s) = K, Ga(s) = 1/s(s2+1), and Gp(s) = 1/(s2+s+1)

(b) Gc(s) = Ks, Ga(s) = 1/(s+1), and Gp(s) =  1/((s+2)(s+5))

2350_Fig4.png

Exercise 6: Disc drive problem

Recall the disc drive problem introduced in tutorial. Last time we developed the transfer functions seen in Figure 5. Do the following:

a) Find the transfer function Gd(s) = Po(s)/Td(s) when Gc(s) = Kc.

b) For Gc(s) = Kp, find the range of Kp for which the closed-loop system is stable.

c) Write a MATLAB script using feedback, series and parallel commands to obtain Po(s)/Pt(s) and Po(s)/Td(s) when Kc = 12.14.

957_Fig5.png

Exercise 7: Disc drive controller

Recall the disc drive problem from Tutorials, where we demonstrated that the open-loop system can be written as

1160_Fig6.png

a) Consider the controller that we designed in tutorial:

Gc(s) = Kc = 12.14

Find the steady-state error to a ramp input with this controller. If we wish to reduce this error to 0.005, can we do it with a different Kc? (Hint: consider your stability limits!)

b) Well try a more complex controller of the form

Gc(s) = Kc(s + a)

which is sometimes called a proportional-derivative controller. Find the closed-loop transfer function, T(s) = Po(s)/Pt(s).

c) Find the conditions (inequalities) on Kc and a such that the closed-loop system is stable. Use MATLAB to plot the stability boundaries (again, inequalities) on a Kc vs a plot.

d) Find values of Kc and a such that the steady-state error to a ramp is less than 0.005.

Exercise 8: Using Root Locus

Consider the feedback control system in Figure 7. In this exercise, we'll walk through designing Gc(s) with different levels of complexity.

1115_Fig7.png

To this ends, do the following by hand (unless otherwise stated):

a) Sketch (by hand) the root locus and find the dosed loop poles when Gc(s) = Kc = 1. Also: find the steady-state error to a step and ramp inputs, ζ and the settling time.

b) In order to improve the transient response, a PD controller of the form

Gc(s) = Kc(s + a)

is being considered. Determine the values of K and a so that the closed loop system has an overshoot of 1.6 and a settling time of 2s for a step input. (Hint: use a to ensure that the poles are on the root locus). You may ignore the effect of the zero dynamics for this part.

c) What is the steady-state error to a ramp?

d) We now require that steady-state error to a ramp is eliminated. Your boss has told you to "just add an integrator" to the controller to eliminate the steady-state error. Sketch the root locus and use it to tell your boss why this won't work.

e) A smarter way to eliminate the steady-state error is to use a RID controller of the form

Gc(s) =  (Kc(s + a)(s + b)/s)

where a is the same as in b) and b is close to the origin. Select a suitable value for b so that the desired poles from b) are on the root locus. If necessary (it may or may not be!), adjust the value of Kc to ensure that the desired closed-loop poles are achieved. You may use MATIAB to check the location of the closed-loop poles.

f) Simulate the closed-loop step response in MATLAB using the PID controller from e). Twiddle Kc a and b (if necessary) to achieve your targets (i.e. 16% overshoot and a settling time of 2s).

Exercise 9: Lead-Lag design using Root Locus

Recall the disc drive problem from Tutorials, where we demonstrated that the open-loop system can be written as

1007_Fig8.png

We will now try to design a lead-lag compensator with the requirements that

  • Overshoot ≤ 10
  • Ts ≤ 75MS
  • eramp(∞)≤ 0.001

Do the following (you may use MATLAB at your leisure, but be sure to explain your logic for your design choices):

a) Use MATLAB to draw the root locus when Gc = Kc.

b) Use MATLAB to draw the region where the dominant closed-loop poles must be to satisfy the transient requirements. Comment on your ability to achieve these requirements with a gain-only controller.

c) Design a lead compensator(s) to meet the transient requirements (i.e. overshoot and settling time).

d) Design a lag compensator to achieve the steady-state tracking requirement.

e) Use MATLAB to compute the resulting closed-loop poles and discuss second order dominance.

Some Hints:

  • You may need to place more than one lead compensator for part c)
  • When assessing second order dominance of the closed-loop system, be sure to cancel poles and zeros (i.e. use minreal).

Mechanical Engineering, Engineering

  • Category:- Mechanical Engineering
  • Reference No.:- M92017959
  • Price:- $270

Guranteed 48 Hours Delivery, In Price:- $270

Have any Question?


Related Questions in Mechanical Engineering

The aim of the project is to demonstrate certain aspects of

The aim of the project is to demonstrate certain aspects of engineering materials in different applications. The projects will be assessed on the basis of a written Research Report. The report should clearly show what yo ...

Force exerted by jet on moving cart1 you need to determine

Force Exerted By Jet On Moving cart. 1. You need to determine the velocity of water that comes out from the nozzle of this system. need the equation please formulate the equation. 2. This water will strike a small cart a ...

Mechanical engineering assignment task - solve the given

Mechanical Engineering Assignment Task - Solve the given problem. Task 1 - A spring with a one-turn loop of 40mm mean radius is formed from a round section of wire having 5 mm diameter. The straight tangential legs of th ...

Projectflow processing of liquor in a mineral refining

Project Flow Processing of Liquor in a Mineral Refining Plant The aim of this project is to design a flow processing system of liquor (slurry) in a mineral (aluminum) refining plant. Aluminum is manufactured in two phase ...

Heat transfer and combustionyou will need graph paper a

HEAT TRANSFER AND COMBUSTION You will need graph paper, a calculator, a copy of Appendix 1 from lesson HTC - 4 - 2 and access to steam tables to answer this TMA. 1. A fuel gas consists of 75% butane (C 4 H 10 ), 10% prop ...

Assignment -q1 explain the difference between the

Assignment - Q1. Explain the difference between the metacentric height of a ship during 'Partially Afloat condition and 'Free Floating' condition; aid a sketch to support your answer. Q2. With the aid of sketches, explai ...

Materials behaviour from atoms to bridges assignment -

Materials Behaviour from Atoms to Bridges Assignment - Distributed loads and static equilibrium (Please note: you should show your steps with necessary figures) Q1. Two beam sections are jointed at C and supported at A b ...

Questions -q1 a qualitative estimate of the effect of a

Questions - Q1. A qualitative estimate of the effect of a wind-tunnel contraction (Figure) on turbulent motion can be obtained by assuming that the angular momentum of eddies does not change through the contraction. Let ...

Assignment - machine learning for signal processingproblem

Assignment - Machine Learning for Signal Processing Problem 1: Instantaneous Source Separation 1. As you might have noticed from my long hair, I've got a rock spirit. However, for this homework I dabbled to compose a pie ...

Problem -a long pipe od 1413 mm id 1318 mm kp 20 wmk

Problem - A long pipe (OD = 141.3 mm, ID =131.8 mm, k p = 20 W/m.K) supplies hot pressurized liquid water at 400 K to a heater in a factory. The pipe has an insulation thickness of 100 mm. A new efficient heater replaces ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As