Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Mechanical Engineering Expert

Preparing CAD geometry for FEA, element selection, meshing and mesh optimisation as well as model simplification. In the first part of this assignment you will be required to numerically analyse the structural performance of a slewing jib crane using a few different methods. You will follow the logical CAE analysis flow by starting with a highly simplified model and verifying your results with simple hand calculations. After this you will increase the geometric complexity of your model and identify the model set up that leads to sufficient model accuracy combined with the lowest calculation time.

Introduction

In this assignment you will be required to apply the skills you have learnt in the lectures in the areas of preparing CAD geometry for FEA, element selection, meshing and mesh optimisation as well as model simplification.

In the first part of this assignment you will be required to numerically analyse the structural performance of a slewing jib crane using a few different methods. You will follow the logical CAE analysis flow by starting with a highly simplified model and verifying your results with simple hand calculations. After this you will increase the geometric complexity of your model and identify the model set up that leads to sufficient model accuracy combined with the lowest calculation time.

Design Brief

Cranes'R'Us has employed you to assess the structural integrity of the initial design of the slewing jib crane shown in Figure 1. The crane will carry a maximum load of 4 tonnes (~40,000N). The crane is manufactured from a structural steel grade (provided in the ANSYS Material Library) and the material data is supplied in Table 1.

The customer requires that the slewing jib crane must not deflect over 15 mm when loaded at its maximum span and that the stresses not surpass the yield stress, in fact a safety factor of approx. 2 is required.

The client has provided you with a detailed CAD model of the final slewing jib crane assembly, to begin your analysis. This can be seen in Figure 1b).

Project Requirements/Tasks:

The project is broken down into 5 key tasks:

1. Quickly assess the structural integrity of the crane by using an idealised beam element model. You must assess whether the current design meets the compliance (deflection) and maximum stress criteria.

2. Validate your initial beam model with a simple hand calculation to ensure your FEA model is accurate.

3. Provide some design recommendations to the client. You do not need to perform or analyse any design changes, but comment on where design improvements could be made based on the results from your analysis.

4. Establish a more detailed, yet still efficient, FEA model of the final design provided to you by the client. To complete this you will need to: a. simplify/de-feature the geometry provided to you to establish a shell-based FE model,

b. apply the appropriate FE meshing techniques to ensure an accurate yet computationally efficient solution, you will be assessed on the quality of your mesh,

c. assess your models mesh convergence,

d. assess the designs structural feasibility,

e. justify and discuss all the modelling decisions you have made.

5. Compile a concise and comprehensive technical CAE report for the client using the reporting template provided. Do not exceed the table sizing for each section. Therefore, you must be concise and dot-points are encouraged. You must describe both FEA model setups and your findings with regard to the design feasibility. Give a justification for all design simplifications you made and show how you established a converged, accurate and efficient FE model.

To complete these tasks will require extensive modelling work but the time frame for the project is tight. Your role in the team is to develop numerical models that combine sufficient model accuracy with the lowest possible calculation time to allow the project to be completed in time and successfully.

814_Prepare CAD geometry for FEA.png

1607_Prepare CAD geometry for FEA1.png

Figure: Design specification and compliance criteria of the slewing jib crane b) Image of the highly detailed CAD model provided by the client.

CAE Technical Report

Introduction and Problem Description

Describe the problem in your own words and describe the approach you will use to tackle it.

Identify the customer's needs and translate these into project design targets.

Give a justification for the geometry you have created. Why do you think it represents the structure sufficiently? Include screenshots to display your simplified model.

Describe the element type you have used and why? What cross-section geometry have you used? What meshing strategy have you used - remember this is a high-level approximation analysis?

Give details of the boundary conditions you have used and justify your approach.

Demonstrate suitable accuracy by using a simple hand calculation for the static analysis of the structure. Describe in detail the hand calculations performed to validate the final solution. What is the approximate error between the simplified hand-calculation and your FEA model? Does the result make sense?

Finally provide your initial assessment of whether the crane meets the performance criteria. Show images/graphics of your analysis results to verify your findings.

Give a justification for the geometry and element selection you have used. What feature have you simplified/de-featured/repaired to develop your FE model and why? Include screenshots to display your simplifications.

Describe the element type you have used and why? What meshing strategies have you used to establish good quality and converged mesh solutions?

Give details of the boundary conditions you have used and justify your approach. Provide some comments if additional boundary conditions could be applied to simplify the problem?

Finally provide your assessment of whether the crane meets the performance criteria. Show images/graphics of your analysis results to verify your findings and discuss the findings of your higher order FE model with the simplified Beam model.

Based on the results of your analysis and your engineering judgement provide some design recommendations to improve performance and reduce material consumption for the crane design.

Mechanical Engineering, Engineering

  • Category:- Mechanical Engineering
  • Reference No.:- M9740311
  • Price:- $50

Priced at Now at $50, Verified Solution

Have any Question?


Related Questions in Mechanical Engineering

Question - truss structureconsider the three membered

Question - Truss Structure Consider the three membered planar truss structure shown in the figure below. All members of the truss have identical square cross-sectional area (A) of 25 mm x 25 mm, and Youngs Modulus (E) = ...

Life cycle assessmentfor your chosen service eg white board

LIFE CYCLE ASSESSMENT For your chosen service (e.g. white board markers), identify two alternatives of getting the service (e.g. brand A, brand B). Choose the most environmentally friendly option by conducting life cycle ...

Problem -a long pipe od 1413 mm id 1318 mm kp 20 wmk

Problem - A long pipe (OD = 141.3 mm, ID =131.8 mm, k p = 20 W/m.K) supplies hot pressurized liquid water at 400 K to a heater in a factory. The pipe has an insulation thickness of 100 mm. A new efficient heater replaces ...

5star questions amp answers1a define heat treatment bname

5 STAR QUESTIONS & Answers 1. A) Define Heat treatment B) Name different types of heat treatment processes C) Write any 4 purposes of Heat treatment 2. Explain various Heat treatment processes 3. A) Compare Thermo plasti ...

Assignment - machine learning for signal processingproblem

Assignment - Machine Learning for Signal Processing Problem 1: Instantaneous Source Separation 1. As you might have noticed from my long hair, I've got a rock spirit. However, for this homework I dabbled to compose a pie ...

Alocate ten minutes for the presentationuse audio visual

Allocate ten minutes for the presentation Use audio / visual / technological supports / aids where appropriate Use a minimum of 3 properly referenced articles. THEMES PRESENTATION TOPIC MEMORY Discuss the three learning ...

Force exerted by jet on moving cart1 you need to determine

Force Exerted By Jet On Moving cart. 1. You need to determine the velocity of water that comes out from the nozzle of this system. need the equation please formulate the equation. 2. This water will strike a small cart a ...

Materials behaviour from atoms to bridges assignment -

Materials Behaviour from Atoms to Bridges Assignment - Distributed loads and static equilibrium (Please note: you should show your steps with necessary figures) Q1. Two beam sections are jointed at C and supported at A b ...

Mechanical engineering assignment task - solve the given

Mechanical Engineering Assignment Task - Solve the given problem. Task 1 - A spring with a one-turn loop of 40mm mean radius is formed from a round section of wire having 5 mm diameter. The straight tangential legs of th ...

Assignment -q1 explain the difference between the

Assignment - Q1. Explain the difference between the metacentric height of a ship during 'Partially Afloat condition and 'Free Floating' condition; aid a sketch to support your answer. Q2. With the aid of sketches, explai ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As