Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Biology Expert

Osmoregulation in Freshwater Metazoans

Freshwater and brackish water animals that are live in hypoosmotic(of lower osmotic pressure) environment and keep a hyperosmotic (of higher osmotic pressure) condition in their body fluids. They may be capable to tolerate only a narrow range of salinity of the medium in which they live. These are termed as stenohaline animals. If they tolerate a wide range of salinity they are termed as euryhaline animals. Essentially their living environments are osmotically less concentrated as compared to their body fluids. They face the problem of the water continuously entering into the body and leaching of salts from the body. Such vacuoles are present in fresh water sponges also. Protonephridia of freshwater flatworms, metanephridia of annelids and coxal glands of crustaceans are another such water pumps that are capable of removing large amounts of fluids from the body. In fact such types of organs have the primary function of water balance rather than excretion of nitrogenous wastes. In some animals there are no unique organs for the removal of water. Hydra is one such example. The regulation of both water and salt in Hydra is performed by active transport of sodium. In the nonexistence of calcium or sodium in the environment the osmoregulatory process breaks down in Hydra. The pumping in of sodium into the gut is followed through the passive flow of water along the osmotic gradient. The mesogloea functions such as an extracellular fluid space. It is believed that two pumps may be operational in Hydra, one transporting Na into mesogloea and the second which transports it into gut. Water taken osmotically is expelled by the mouth. Active transport of sodium takes care of both osmotic and volume regulation. So there is an influx of water into the body through the external surface, and the excess water is removed by the gastrovascular cavity, by the mouth. Fluid in the gastrovascular cavity is hypoosmotic to tissue fluid. The gastrovascular cavity is so supposed to act like big contractile vacuole Ability to produce dilute urine has been demonstrated in animals relating to more advanced phyla (arthropods, earthworms and fresh water molluscs). By using the techniques of micropuncture and clearance of tubular fluid in the metanephric tubules, both filtration and active transport have been illustrated. For example, in the antennal gland of fresh water crayfish, the end sac functions as the site of filtration. Chloride is reabsorbed like the filtered urine passes through the long tubule resultant in conservation of salts and reabsorption of water.

Filtration in arthropods and molluscs is essentially performed by the hydrostatic pressure of the blood. In arthropods, the wall of the coelomic sac is extremely vascularised. In molluscs the heart passes through the filtration cavity or pericardial sac. There is filtration by the wall of the heart, into the pericardial cavity. From the pericardial cavity, filtrate passes through the nephrostome into the kidney. Usually the coelomic sac is located near the heart or near the region of high blood pressure. The observed dilution of urine in the distal tubule and ureter could be due to the addition of water or to the reabsorption of salts. But the make use of metabolic poisons that arrests the active uptake has clearly illustrated that absorption of solutes is accountable for the excretion of hypoosmotic urine. It could be said that the capacity of excretory organs to form hypoosmotic urine and to trap ions from ambient fluid played a important role in the colonisation of the fresh water environment.

Biology, Academics

  • Category:- Biology
  • Reference No.:- M9520630

Have any Question?


Related Questions in Biology

Question phytoplankton chemosynthesis and mitochondriafor

Question: "Phytoplankton, Chemosynthesis, and Mitochondria" For your primary post, please respond to one of the following three topics with a post of at least 125 words that addresses each point given in the instructions ...

One page highlighting the current state of federal

One page highlighting the current state of federal legislation for the use of stem cells

Diffusion and osmosis questionin your large intestine the

Diffusion and osmosis question In your large intestine, the water from the food you have eaten needs to be kept in the body to prevent dehydration. Therefore the high concentration of water in feces needs to be moved int ...

2croh3nbspnbsp3br2 10oh-6br-nbspnbsp2cro42- 8h2oin the

2Cr(OH) 3  +  3Br 2 + 10OH - 6Br -  +  2CrO 4 2- + 8H 2 O In the above redox reaction, use oxidation numbers to identify the element oxidized, the element reduced, the oxidizing agent and the reducing agent.

Assignment 1 biotechnology articleassignment 1 is the first

Assignment 1: Biotechnology Article Assignment 1 is the first phase of a project that you will complete, in stages, during the term. You will begin by selecting a specific biotechnology that you would like to cover throu ...

Describe at least one significant structural difference

Describe at least one significant structural difference between the human chromosomes and Drosophila Melanogaster chromosomes

The ch50 assay is a traditional clinical assay that

The CH50 assay is a traditional clinical assay that measures the function of complement components. In a CH50 assay patient blood is drawn and serum separated from it (serum has no cells). Patient serum is mixed with ant ...

If someone has been sitting without standing for 6 hours

If someone has been sitting without standing for 6 hours, and blood has been pooling in their veins, why would they feel dizzy when they stood up? How does this related to stroke volume and mean arterial pressure?

Calculate the concentrations at eqbm of h2co3 hco3- co32-

Calculate the concentrations at eqbm of H2CO3, HCO3-, CO32-, and H+ in a saturated aq solution of H2CO3 in which the original concentration of H2CO3 is 0.034M (Ka1= 4.3*10^-7, Ka2 = 4.8*10^-11)

Case study question -case study - mary 21 years old

Case Study Question - Case Study - Mary, 21 years old, presented to the hospital emergency department with an infected laceration on her left foot. Mary was at a beach resort four days ago, when she trod on a broken glas ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As