Ask Electrical & Electronics Expert

Objective: To study the time and temperature variations in the hardness of Al-4% Cu alloy on isothermal aging.

Introduction

Materials can be hardened by inhibiting the motion of crystal defects called dislocations. In pure metals, the presence of defects (such as vacancies, interstitials, dislocations and grain boundaries) can enhance the strength. In single phase alloys, additional resistance to deformation may arise from the presence of foreign atoms. In two-phase alloys, additional stress is needed to enable the dislocation to intersect the  second-phase particles. A finely dispersed precipitate may, therefore, strengthen the material. This phenomenon is termed precipitation hardening.

Procedures

1. Stamp the five 2024 Al specimens with an identifying mark.

2. Measure the hardness of all of the specimens using Rockwell B.

3. Place all five in a heat-treatment crucible and into a furnace for solution treatment at 500°C (930°F) for 30 minutes.

4. Natural Aging - Remove one specimen and drop into a pail of water. Once the specimen is cool, measure the Rockwell B hardness at intervals of approximately 30 min, 90 min, 1 day, and 1 week for this specimen. It will be necessary for one member to come back to the lab during the week when the lab is in session to measure the hardness.

5. Artificial Aging - Remove the remaining four specimens and drop them into a pail of water. Once the specimens are cool remove them from the quenching bucket. Measure the Rockwell B hardness. Next, transfer the specimens to a furnace set at 190°C (370°F).

Remove one sample after 3 min, 10 min, 60 min and 90 min. Quench into water and measure the Rockwell B hardness. After one week, again measure the Rockwell B hardness of the 3- and 10-minute artificially aged specimens.

Write Up

1. Prepare a memo report.

2. Plot the hardness vs. time of aging for each aging temperature, using Excel.

3. How does aging temperature affect the time and hardness?

4. What happens to the 190°C (370°F) 3 and 10 minute specimens after one week? Why?

5. If you were going to use 2024 Al in an application at a temperature of 190°C (370°F), what problems could be encountered?

6. Discuss errors in this experiment and their sources.

Attachment:- assign.rar

Electrical & Electronics, Engineering

  • Category:- Electrical & Electronics
  • Reference No.:- M91794115
  • Price:- $30

Priced at Now at $30, Verified Solution

Have any Question?


Related Questions in Electrical & Electronics

Question 1for the ce amplifier in figure 1 given the

Question 1 For the CE amplifier in Figure (1), given the following component parameters: Parameter Value β DC , β AC 150 V BE 0 . 7 V V CC 12 V R C 820 ? R E 1 100 ? R E 2 220 ? R 1 20 k? R 2 5 . 2 k? R L 100 k? C 1 , C ...

Question -i a star-connected three-phase synchronous

Question - (i) A star-connected, three-phase synchronous induction motor takes a current of 10 amps from a 415 volt supply at unity power factor when supplying a steady load. If the synchronous reactance is 5 ohms/phase ...

1 a name the three major groups of contamination and

1. (a) Name the three major groups of contamination and briefly describe their physical characteristics. (b) Where do the above contamination types come from? Give one example of each. 2. Name two processes metrics which ...

Question 1 in the voltage regulator circuit in figure p221

Question 1: In the voltage regulator circuit in Figure P2.21, V 1 = 20 V, V Z = 10 V, R i = 222Ω and P z (max) = 400 mW. (a) Determine I L, I z , and I L , if R L = 380Ω. (b) Determine the value of R L , that will establ ...

Summative assessmentin 2017 sej101 assessment will consist

Summative Assessment In 2017 SEJ101 assessment will consist of nine tasks that will develop a portfolio of your assessed work. Throughout the trimester you will have the opportunity for feedback on all nine tasks before ...

1 a name the three major groups of contamination and

1. (a) Name the three major groups of contamination and briefly describe their physical characteristics. (b) Where do the above contamination types come from? Give one example of each. 2. Name two processes metrics which ...

1 a name the three major groups of contamination and

1. (a) Name the three major groups of contamination and briefly describe their physical characteristics. (b) Where do the above contamination types come from? Give one example of each. 2. Name two processes metrics which ...

Case studythis assignment consists of a written report of

CASE STUDY This assignment consists of a written report of approximately 1000 words and any diagrams in which you are asked to critically compare different process methods used to achieve the same result and show an awar ...

Problem 1 a two-phase servomotor has rated voltage applied

Problem 1: A two-phase servomotor has rated voltage applied to its excitation winding. The torque speed characteristic of the motor with Vc = 220 V, 60 Hz applied to its control phase winding is shown in Fig.1. The momen ...

Electrical engineering questions -q1 two ideal voltage

Electrical Engineering Questions - Q1. Two ideal voltage sources designated as machines 1 and 2 are connected, as shown in the figure below. Given E 1 = 65∠0 o V, E 2 = 65∠30 o V, Z = 3Ω. Determine if Machine 1 is genera ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As