Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Electrical & Electronics Expert

 What is basic requirement of semiconductor laser? Draw its label diagram and explain its working with necessary theory. Write down the applications of semiconductor laser.                                                                                OR

Explain the term

(1)    Spontaneous emission

(2)    Optical pumping

Describe the construction and working of semiconductor laser. Describe various application lf semiconductor laser.

How do pumping and population inversion are achieved in a semi-conductor laser?  What are advantages of using hetrojunction   over homojunction in semi-conductor lasers ?

                                                                                  

What do you understand by population inversion? With help of energy level diagram explain how population inversion is achieved to He-Ne laser.

                                                                                   

Give the reasons for the following basic properties of a laser :

1.       High intensity

2.       High directionality

  

Ans.: Population inversion

Under ordinary conditions of thermal equilibrium the number of atoms in higher energy level is considerably smaller than the number in higher energy level so that there is very little stimulated emission compared to absorption. Hence under ordinary condition an incident photon is more likely to be absorbed rather than emission. Hence laser action will not take place. If, however, the larger number of atoms are made available in the higner energy level  than stimulated emission will take place easily. This process of achieving the larger number lf atoms in the higher energy level than the  lower energy level is known as population inversion. The term population inversion describes an assembly of atoms in which the majority are in energy levels above the ground state . Theprocess of achieving population inversion is known as "pumping" of atoms. Most commonly used methods are as follows : 1. Optical pumping (Used in Ruby Laser). 2. Electric discharge (Used in Helium-Neon Laser). 3. Inelastic-atom-atom collisions. 4. Direct conversion (Used in Semi-conductor Laser). 5. Chemical reaction (Used in CO2 Laser).

Helium-Neon Laser

Helium Neon Laser is a four-level laser and was built by Ali javan, W. Bennett and D. Herriot in 1961.

Construction : The schematic of a typical He-Ne laser is shown in fig. It consists of a long discharge tube of length about 50 cm and diameter 1 cm. The tube contains a mixture of about 10 parts of helium and 1 part of neon at a low pressure. At both ends of the tube are fitted optically plane and parallel mirrors, one of them being partially silvered. The spacing of the mirrors is equal to an integral number of half0wavelengths of the laser light. In discharge. An electric discharge is produced in the gas by means of electrodes outside the tube connected to a source of high-frequency alternation current.

Working : When the power is switched on, the electrons from the discharge collide with and "pump" the He and Ne atoms to metastable states 20.61 e V and 20.66 e V respectively above their ground states. Some of the excited He atoms transfer their energy to ground-state Ne atoms in collision, with the 0.05 e V of additional energy being provided by the kinetic energy of the atoms. Thus, the purpose of the He atoms is to help in achieving a population inversion in the Ne atoms. When an excited Ne atom passes, from the metastable state at 20.66 e V to an excited state of 18.70 e V, and it emits a photon of wavelength 6328 A. This photon travels through the gas-mixture, and if it is moving parallel to the axis of the tube is reflected back and forth by the mirror-ends until it stimulates an excited Ne and causes it to emit a fresh 6328 A. photon in phase with the stimulating photon. This stimulated transition from 20.66 e V level to 18.70 e Vlevel is the laser transition. This process is continued and when a beam of coherent radiation becomes sufficiently intense, a portion of it escapes through the partially silvered end. In He-Ne laser, the power needed for excitation is less than that in a three-level  laser. A He-Ne laser operates in continuous wave mode.

Semiconductor laser : Semiconductor laser has remarkably small size, exhibits high efficiency and can be operated at low temperatures. A semiconductor laser is made by forming a hunction between p-type and n-type materials. The basic mechanism includes, when the current is passed through this p-n junction diode in forward bias holes move from p-region to n-region and electrons move from n-region to p-region. These electrons and holes are recombined in the junction region and emit photons due to the transition of electrons from the conduction band to the valence band resultion in stimulated radiation coming from a very narrow region near the junction. As the applied current is gradually increased, a stage is reached when spontaneous emission changes into stimulated emission thereby laser beam is emitted. This process is enhanced by polishing the surfaces of the p-n junction to act as mirrors. Initially Ga-As junction diode has been used for emission of laser with a frequency. Later on p b-s, In etc. have been used for laser action. Presently, semiconductor laser is made of an active layer of gallium arsenide of thickness 0.2 microns. This is sandwiched in between a n-type Ga As Al layer as shown in figure. The resonant cavity is provided by polishing opposite faces of the Ga As crystal and the pumping occurs by applying the electric field. This type of laser beam has wavelengths range of 7000 A  - 25000 A. 

Electrical & Electronics, Engineering

  • Category:- Electrical & Electronics
  • Reference No.:- M9503735

Have any Question?


Related Questions in Electrical & Electronics

Question 1 in the voltage regulator circuit in figure p221

Question 1: In the voltage regulator circuit in Figure P2.21, V 1 = 20 V, V Z = 10 V, R i = 222Ω and P z (max) = 400 mW. (a) Determine I L, I z , and I L , if R L = 380Ω. (b) Determine the value of R L , that will establ ...

Electrical engineering questions -q1 two ideal voltage

Electrical Engineering Questions - Q1. Two ideal voltage sources designated as machines 1 and 2 are connected, as shown in the figure below. Given E 1 = 65∠0 o V, E 2 = 65∠30 o V, Z = 3Ω. Determine if Machine 1 is genera ...

Advanced computational techniques in engineering assignment

Advanced Computational Techniques in Engineering Assignment - Optimisation For this assignment, you are required to carry out the process of attempting to solve different optimisation problems. For each question, you are ...

Nanotechnology engineering - resonance circuits questions

Nanotechnology Engineering - Resonance Circuits Questions - Q1) A series RLC network has R = 2KΩ, L = 40mH and C = 1μF. Calculate the impedance at resonance and at one-fourth, one-half, twice, and four times the resonant ...

1 a name the three major groups of contamination and

1. (a) Name the three major groups of contamination and briefly describe their physical characteristics. (b) Where do the above contamination types come from? Give one example of each. 2. Name two processes metrics which ...

Questions -q1 a single-phase transformer rated 21 kv130 v

Questions - Q1. A single-phase transformer rated 2.1 kV/130 V, 7.8 kVA has the following winding parameters: r1= 0.7Ω, x1 = 0.9Ω, r2 = 0.04Ω and x2 = 0.05Ω. Determine: a. The combined winding resistance ________ Ω and le ...

Problem 1given a sequence xn for 0lenle3 where x0 1 x1 1

Problem # 1: Given a sequence x(n) for 0≤n≤3, where x(0) = 1, x(1) = 1, x(2) = -1, and x(3) = 0, compute its DFT X(k). (Use DFT formula, don't use MATLAB function) Problem # 2: Use inverse DFT and apply it on the Fourier ...

Summative assessmentin 2017 sej101 assessment will consist

Summative Assessment In 2017 SEJ101 assessment will consist of nine tasks that will develop a portfolio of your assessed work. Throughout the trimester you will have the opportunity for feedback on all nine tasks before ...

Questions -problem 1 - given the sinuosidal voltage vt 50

Questions - Problem 1 - Given the sinuosidal voltage v(t) = 50 cos(30t+10 o ) V, find: (a) the amplitude V m (b) the period T, (c) the frequency f and (d) v(t) at t = 10 ms. Problem 2 - A current source in a linear circu ...

Question 1for the ce amplifier in figure 1 given the

Question 1 For the CE amplifier in Figure (1), given the following component parameters: Parameter Value β DC , β AC 150 V BE 0 . 7 V V CC 12 V R C 820 ? R E 1 100 ? R E 2 220 ? R 1 20 k? R 2 5 . 2 k? R L 100 k? C 1 , C ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As