Ask Mechanical Engineering Expert

 

PART A

A new process plant for ore processing is currently being planned. The design is only in the first stage. However, three requirements have already been clearly stated:

- The bins should have a total capacity of 12,000 m3 bulk material;

- The material should have a residence time of 96 hours in the bins;

- The system will run continuously.

Your colleagues in charge of designing the bins agreed that a total number of 10 bins is required to keep the size of each unit reasonable. The bins will be positioned in 2 rows of 5 as shown in Figure 1. Based on the flow property of the bulk material, mass-flow hoppers have been designed with an outlet dimension of 250 mm width and 1180 mm length.

You are now in charge of realizing the conceptual design of a system to control the discharge of the bins. The same discharge system will be installed for each of the 10 bins. The use of screw feeders appears to you as being the best alternative.

After discharge from the hoppers, the material coming from each of the bins should be conveyed away from the bins system up to Point B. For this purpose, you decided 2/3 to design two horizontal conveyors, each conveyor being able to handle the material coming from each row of 5 bins.

The entire discharge and conveying system will be manufactured of stainless steel.

The results of the flow property testing are as follows:

Flow Property Results:

Bulk density ρb = 2035 kg/m3

Effective angle of internal friction δe = 45°

Friction angle on Stainless Steel Φ = 20°

You are asked to realize the design of the screw feeders and horizontal screw conveyors and produce a report in which you will detail your methodology, assumptions, and results. With your report, you need to show that your proposed design is optimized and the process requirements are fulfilled. You should also detail:

1. Optimal Feeder Geometry

This will require calculation of the volumetric efficiency, throughput, and throughput gradient. A plot of those characteristics in the direction of the feed shall be provided.

A comparison of 3 different screw geometries will be performed. This will allow you to select the best geometry. Explain the reason(s) for that choice and draw a schematic of the selected screw geometry including the hopper section and about 1 meter conveying section. All dimensions including clearance and blade thickness should be given.

2. Optimal Rotational Speed for the Feeder

For the 3 screw geometries investigated, calculate the required screw speed. Ensure that the rotational speed required for the screw geometry that you selected is appropriate for a feeder.

3. Design of the Horizontal Screw Conveyors

This will require the selection of screw diameter, shaft diameter and pitch that permit the achievement of the desired throughput. A plot of the throughput achievable according to the screw speed shall be provided for three screw geometries. You will then select the screw geometry that appears to you as being the most appropriate and explain your choice. What is the minimum screw speed required to achieve the desired throughput for the best screw geometry? Indicate this speed on the graph.

PART B - MECH6250 Students only

For the screw feeder geometry that you selected, calculate the total torque required to convey the material over a total length of 4 m. Plot the torque and cumulative torque in the direction of the feed.

MARKING CRITERIA (for both Parts A and B)

This assignment is worth 20% of the overall assessment. The marking criteria for this assignment are as follows:

- A clear understanding of the problem;

- The correctness of the calculations;

- The technical and practical merit of the recommended design (including logical choice of the assumptions required in the calculations, and correct selection of the design);

- Quality of the report (clear presentation of the methodology, quality of the diagrams and graphs, ability to provide a concise, clear and incisive case for the proposed design).

Mechanical Engineering, Engineering

  • Category:- Mechanical Engineering
  • Reference No.:- M9532738

Have any Question?


Related Questions in Mechanical Engineering

The aim of the project is to demonstrate certain aspects of

The aim of the project is to demonstrate certain aspects of engineering materials in different applications. The projects will be assessed on the basis of a written Research Report. The report should clearly show what yo ...

Force exerted by jet on moving cart1 you need to determine

Force Exerted By Jet On Moving cart. 1. You need to determine the velocity of water that comes out from the nozzle of this system. need the equation please formulate the equation. 2. This water will strike a small cart a ...

Mechanical engineering assignment task - solve the given

Mechanical Engineering Assignment Task - Solve the given problem. Task 1 - A spring with a one-turn loop of 40mm mean radius is formed from a round section of wire having 5 mm diameter. The straight tangential legs of th ...

Projectflow processing of liquor in a mineral refining

Project Flow Processing of Liquor in a Mineral Refining Plant The aim of this project is to design a flow processing system of liquor (slurry) in a mineral (aluminum) refining plant. Aluminum is manufactured in two phase ...

Heat transfer and combustionyou will need graph paper a

HEAT TRANSFER AND COMBUSTION You will need graph paper, a calculator, a copy of Appendix 1 from lesson HTC - 4 - 2 and access to steam tables to answer this TMA. 1. A fuel gas consists of 75% butane (C 4 H 10 ), 10% prop ...

Assignment -q1 explain the difference between the

Assignment - Q1. Explain the difference between the metacentric height of a ship during 'Partially Afloat condition and 'Free Floating' condition; aid a sketch to support your answer. Q2. With the aid of sketches, explai ...

Materials behaviour from atoms to bridges assignment -

Materials Behaviour from Atoms to Bridges Assignment - Distributed loads and static equilibrium (Please note: you should show your steps with necessary figures) Q1. Two beam sections are jointed at C and supported at A b ...

Questions -q1 a qualitative estimate of the effect of a

Questions - Q1. A qualitative estimate of the effect of a wind-tunnel contraction (Figure) on turbulent motion can be obtained by assuming that the angular momentum of eddies does not change through the contraction. Let ...

Assignment - machine learning for signal processingproblem

Assignment - Machine Learning for Signal Processing Problem 1: Instantaneous Source Separation 1. As you might have noticed from my long hair, I've got a rock spirit. However, for this homework I dabbled to compose a pie ...

Problem -a long pipe od 1413 mm id 1318 mm kp 20 wmk

Problem - A long pipe (OD = 141.3 mm, ID =131.8 mm, k p = 20 W/m.K) supplies hot pressurized liquid water at 400 K to a heater in a factory. The pipe has an insulation thickness of 100 mm. A new efficient heater replaces ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As