Ask Biology Expert

Nature of viral diseases

Viral diseases are manifested in acute, sub-acute or chronic forms, as frank clinical cases or as latent infections, some of which are fatal. These diseases occur in epidemic or endemic forms.  Viruses spread either directly by contact or indirectly through vectors and fomites such as through attendants, infected clothes, insects, feed and water troughs or by droplet infection. In Marek's disease of poultry and infectious bovine rhinotracheitis and foot-and-mouth disease in bovines, there is true 'carrier' status where the animals harbor the virus even after recovery from the disease. They act as sources for the spread of the disease under favorable conditions. Activation of a latent viral infection occurs when the resistance of the host is decreased on account of physiological stress including pregnancy and parturition, prolonged treatment with immunosuppressive drugs or due to insidious diseases such as mycotoxicosis.

The epidemiology deals with the occurrence of virus in a population with reference to its distribution and the factors which determine the observed distribution. The epidemiological methods, including descriptive, analytical and experimental, provide data which when subjected to statistical interpretations form the basis for formulation of control strategies. Serological surveys employing modern techniques, viz. enzyme- linked immunosorbent assay (ELISA), radioimmunoassay, fluorescent antibody, western blotting etc. have proved useful in diagnosing virus diseases. Nucleic acid based techniques viz. nucleic acid hybridization, polymerase chain reaction and nucleotide sequence analysis have also been used for confirmatory diagnosis and for epidemiological interpretations.

Virus infections, in general, are not influenced by chemotherapeutic agents or

antibiotics, except for the diseases caused by large-sized viruses of Herpes and Pox group. The use of specific antisera has been in vogue for the treatment of certain virus diseases, viz. rinderpest, swine fever in animals and measles, rabies and hepatitis in human beings.

Whereas a durable immunity following recovery from a bacterial disease is uncommon, one attack of a virus disease leaves behind a solid and lasting immunity, e.g. Yellow fever and small pox in human beings and rinderpest in cattle. In some diseases, however, recovery results only in a transient immunity as in common cold and influenza in human beings and foot-and-mouth disease in cattle. The resistance whether solid, partial or transient is due to the presence of antibodies circulating in the blood stream or as a result of cell-mediated immunity or both The second infection is prevented because the circulating antibodies attach themselves to the virus particles and thereby render them non-infective to susceptible host cells, if any. After vaccination against or after recovery from a virus infection, the virus is present in all the cells of a particular type for which it has predilection so that they are not any more susceptible to the entry of the same or a related virus; the recurrence of the disease is thus prevented. This is termed as the 'interference phenomenon' mediated by the production of interferon. Examples of such resistance are the immunity following vaccination against rinderpest with modified attenuated rinderpest virus, or against fowl-pox with modified attenuated fowl-pox or pigeon-pox virus.

The role of specific antibodies in affording protection to the infected host against particular virus(es) is well studied. It is now understood that the host's immune response is determined by a delicate balance of the circulating antibody mediated reactions such as virus neutralization and activation of complement system, cell mediated reactions (mainly thymus-dependent) resulting in the production of a battery of biologically active substances called lymphokines, which act on cell mitosis, cell metabolism, cell motility and cell function and other mechanisms such as phagocytosis, inflammation and blood coagulation, besides several other physiological changes, which include certain hormones, altered body temperatures, malnutrition, concurrent infections, stress, non-specific humoral inhibitors and age. Innate genetic resistance of the host is also an important factor in the natural immunity against specific virus diseases.

Biology, Academics

  • Category:- Biology
  • Reference No.:- M9508148

Have any Question?


Related Questions in Biology

Case study question -case study - mary 21 years old

Case Study Question - Case Study - Mary, 21 years old, presented to the hospital emergency department with an infected laceration on her left foot. Mary was at a beach resort four days ago, when she trod on a broken glas ...

Assignment -the upper-case blue letters are the 14th exon

Assignment - The upper-case, blue letters are the 14th exon (of 20) in the Hephl1 gene in mice. The lower-case (black) letters are from the flanking introns.  The highlighted bases indicate primers that may be used to ge ...

Question - a pure strain of mendels peas dominant for all

Question - A pure strain of mendel's peas, dominant for all seven of his independently assorting genes, was testcrossed. How many different kinds of gametes could the F1 PRODUCE?

Igfbp2 rbp4 and factor d post bariatric surgeryigfbp2 what

IGFBP2/ RBP4 and Factor D Post Bariatric Surgery IGFBP2 ( what the normal physiological action in the body? And how it affectedby obesity? andpost bariatric surgery?) RBP4 (what the normal physiological action in the bod ...

Assignment on nutrition - q1 task you need to select 2

Assignment on Nutrition - Q1. Task: You need to select 2 different age groups of your choice. You will need to plan balanced meals with snacks for a day. Once you have laid out the meal plan you need to: Explain why the ...

Question - gene cloning a please write the steps to clone

Question - Gene Cloning a) Please write the steps to clone the protease gene from Bacillus strain whose genome sequence is not known. b) Express the protease gene to obtain the enzyme in high yield, please plan your prot ...

Instructions address each question below as it relates to

Instructions: Address each question below as it relates to the caw study given. A patient was brought to the Emergency Department by ambulance with two arrow wounds. One arrow is still in the patient on the left side; en ...

Use of molecular tools and bioinforrnatics in the diagnosis

Use of Molecular Tools and Bioinforrnatics in the Diagnosis Characterization of Enteric Pathogens from a Case Study Purpose: The purpose of this project is to familiarize the student with modern molecular tools and bioin ...

Experiment 1 staining video1 open the media player by

Experiment 1: Staining Video 1. Open the Media Player by clicking on the film-strip button in the lower left of the lab's window frame, as shown below. The Media Player is a repository of images, videos, saved snapshots, ...

Chosen dr jan nolta- stem cell researcher head of uc davis

Chosen Dr. Jan Nolta- Stem Cell Researcher Head of UC Davis Stem Cell Program Director Topic Background: early Stem cells have the ability to develop into many different types of cells. Stem Cell Research is not without ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As