Ask Electrical & Electronics Expert

I. OBJECTIVES
1. To analyze a reactive AC circuit and determine its Thevenin Equivalent Circuit

2. To analyze a reactive AC circuit and determine the Maximum Power Transfer load and values

3. Use MultiSim to simulate the reactive AC circuits and validate our calculations

4. Build and take measurements on the reactive AC circuit to validate our predicted results

II. PARTS LIST
Equipment
IBM PC or Compatible
Function Generator
DMM (Digital Multimeter)

1-2.2k? Resistor                                1-4.7 mH Inductor

1-5.1k? Resistor                                1-10k? resistor                                              

Misc Capacitors

Software

MultiSim 11

III. PROCEDURE

A. Theoretical Analysis

1. Given the circuit in Figure 1, calculate the values for the load voltage and current. Since the self-resistance of the inductor is so small compared to all other resistances/reactances, it can be ignored for your calculations.

2. Calculate the values for the Thevenin Equivalent Circuit, ZTH and VTH.Be sure to include both magnitude and phase values in your solution.Assume that the load will be placed where RL is located for your analysis.

3. Based on your calculations for ZTH, what are the associated resistive and reactive values that comprise the equivalent impedance? Indicate whether it is capacitive or inductive by circling the correct choice below. Also calculate the associated component value for that reactive component.

4. Based on your Thevenin Equivalent Circuit calculations, what load impedance would you choose in order to achieve maximum power transfer?Again, circle your XC /XL choice and include the component value.

5. Based on this choice of load impedance, what will the maximum power equal?

B. MultiSimSimulation and Circuit Calculations

1. Launch MultiSim and build the circuit schematic shown in Figure1.Insert DMMs in the correct locations to measure load current and voltage.

2. Activate the simulation and measure the load voltage and current.

3. Dothese values agree with those obtained in Part A, Step 1?

(YESorNO)

Explain why your answer is what it is.

1420_voltage.png

Figure 1: Thevenin Example Circuit

4. Now, build a new circuit in MulitSimthat uses your calculated values for VTH and ZTH. This is depicted in Figure 2.You will of course use the calculated values for R and the reactive component (either an inductor or a capacitor) found in Part A, Step 3. Connect the 10 k? load to the circuit. Include DMMs to measure load voltage and current.

1696_volt.png

Figure 2: Thevenin Equivalent Connection

5. Activate the simulation and measure the load voltage and current.

6. Do these values agree with those obtained in Part B, Step 3? (i.e.,Is the Thevenin Circuit truly equivalent?)

(YESorNO)

Explain why your answer is what it is.

7. Now replace the 10 k? load with the resistor and reactive component you found for maximum power transfer (Part A, Step 4).

8. Activate the simulation and measure the load voltage and current.

9. Based on these measurements, calculate the maximum power transfer.

10. Doesthis value agree with the value obtained in Part A, Step 5?

(YESorNO)

Explain why your answer is what it is.

C. Construction and Analysis of a Series-Parallel Circuit

1. Construct the circuit in Figure 1.
2. Activate the circuit and measure the load voltage and current.

3. Are these the same as the simulated and calculated values?

(YES or NO)

If you answered NO, explain why you think they differ.

4. Now, disconnect the load resistor and measure VTH as shown in Figure 3.

1254_circuit.png

Figure 3: Measuring VTH

5. Doesthis value agree with the value obtained in Part A, Step 2?

(YESorNO)

Explain why your answer is what it is.

6. Measuring ZTH requires an indirect method to determine its value. Connect the circuit as shown in Figure 4. We will be using Ohm's Law to indirectly determine the value for ZTH.

2164_register.png

Figure 4: Measuring ZTH

Notice that we have shorted out the original power supply-the standard first step used to determine ZTH. Then, we applied a source and series resistance to the right-hand side of the circuit. We are going to use this voltage and current measured through R3 to determine ZTH. R3 is very small compared to the rest of the circuit's parameters, so it does not significantly affect the circuit's operation.

7. Measure and record the voltage found across R3. Calculate the current using Ohm's Law.

8. Because IR3 is the same as the source current, we can now calculate ZTH = 5 VRMS/IR3

9. Using twooscilloscope probes, measure the angle associated with ZTH. This will be the angle between the applied voltage and the voltage across R3. That is, one scope probe goes across the applied voltage source; the other goes across R3. Be sure to connect both scope ground clips to the same ground point.

10. Do these values (ZTH&)agree with those obtained in Part A, Step 2?

(YESorNO)

Explain why your answer is what it is.

11. Obtain components close to the values that you calculated in Part A, Steps 3 and 4. Rewire the circuit as it is shown in Figure 2, using the calculated components for ZTH and the maximum power transfer load. Record your chosen values in Table 1, Case #1.

12. Measure the load's voltage and calculate the power. Record these values in Table 1.

13. Choose a number of different capacitor values from your kit to replace the one you are using for your load impedance. Measure and record the voltages. Calculate the associated power. Record your choices and findings in Table 1. You should do this with four different combinations of RLand CL.

Case # RL CL XC |ZL| VL PL
1            
2            
3            
4            
5            

Table 1: Maximum Power Transfer

14. Does Case #1 give you the maximum power in the Table?
(YES or NO)

Explain why your answer is what it is.

Electrical & Electronics, Engineering

  • Category:- Electrical & Electronics
  • Reference No.:- M91794087
  • Price:- $40

Priced at Now at $40, Verified Solution

Have any Question?


Related Questions in Electrical & Electronics

Question 1for the ce amplifier in figure 1 given the

Question 1 For the CE amplifier in Figure (1), given the following component parameters: Parameter Value β DC , β AC 150 V BE 0 . 7 V V CC 12 V R C 820 ? R E 1 100 ? R E 2 220 ? R 1 20 k? R 2 5 . 2 k? R L 100 k? C 1 , C ...

Question -i a star-connected three-phase synchronous

Question - (i) A star-connected, three-phase synchronous induction motor takes a current of 10 amps from a 415 volt supply at unity power factor when supplying a steady load. If the synchronous reactance is 5 ohms/phase ...

1 a name the three major groups of contamination and

1. (a) Name the three major groups of contamination and briefly describe their physical characteristics. (b) Where do the above contamination types come from? Give one example of each. 2. Name two processes metrics which ...

Question 1 in the voltage regulator circuit in figure p221

Question 1: In the voltage regulator circuit in Figure P2.21, V 1 = 20 V, V Z = 10 V, R i = 222Ω and P z (max) = 400 mW. (a) Determine I L, I z , and I L , if R L = 380Ω. (b) Determine the value of R L , that will establ ...

Summative assessmentin 2017 sej101 assessment will consist

Summative Assessment In 2017 SEJ101 assessment will consist of nine tasks that will develop a portfolio of your assessed work. Throughout the trimester you will have the opportunity for feedback on all nine tasks before ...

1 a name the three major groups of contamination and

1. (a) Name the three major groups of contamination and briefly describe their physical characteristics. (b) Where do the above contamination types come from? Give one example of each. 2. Name two processes metrics which ...

1 a name the three major groups of contamination and

1. (a) Name the three major groups of contamination and briefly describe their physical characteristics. (b) Where do the above contamination types come from? Give one example of each. 2. Name two processes metrics which ...

Case studythis assignment consists of a written report of

CASE STUDY This assignment consists of a written report of approximately 1000 words and any diagrams in which you are asked to critically compare different process methods used to achieve the same result and show an awar ...

Problem 1 a two-phase servomotor has rated voltage applied

Problem 1: A two-phase servomotor has rated voltage applied to its excitation winding. The torque speed characteristic of the motor with Vc = 220 V, 60 Hz applied to its control phase winding is shown in Fig.1. The momen ...

Electrical engineering questions -q1 two ideal voltage

Electrical Engineering Questions - Q1. Two ideal voltage sources designated as machines 1 and 2 are connected, as shown in the figure below. Given E 1 = 65∠0 o V, E 2 = 65∠30 o V, Z = 3Ω. Determine if Machine 1 is genera ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As