Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Electrical & Electronics Expert

In this project we will consider the control of a synchronous generator supplying electricity to the grid. We will focus on the problem of frequency stability. The frequency at which the generator rotates is directly proportional to the frequency of the currents and voltages in the power grid. Hence, keeping the rotational frequency constant is of fundamental importance to the correct operation of the grid. A simpli ed model to study the stability of a single generator connected to the grid is the so called swing equation given by:

1973_Compute the transfer function.png

In this model ωs is the synchronous rotational velocity 2Π50 rad/s. The constant D = 5 represents the damping induced by mechanical and electrical losses and the constant H has the value 4. The term Pm = 1/2 represents the mechanical power that is transformed by the generator into electrical power and the term Usinδ represents the electrical power and describes the e ect the grid has on the generator. We will take U as the input since we can change its value by the voltage across the excitation coil in the generator's rotor.

A synchronous generator, when operating in steady state, maintains a constant angular velocity achieved by matching the supplied mechanical power Pm with the power lost through dissipation -D/H(ω - ωs) and the electrical power Usinδ . When a fault occurs and a transmission line is tripped (opened) there is a sudden change in the electrical power and some generators will accelerate while other generators will decelerate. Once the fault is cleared and the transmission line is re-closed, di erent generators will be rotating at di erent angular velocities and voltages and currents in the power grid will no longer be sinusoids with a frequency of 50 Hz.

The objective of this project is to design a controller that will resume the steady state operation of the generator at 50 Hz. Please justify all your answers including relevant plots if necessary.

Attach the Simulink diagram to your report.

1. For which values of U and  is the pair ((δ; ωs); U) an equilibrium point?
2. Linearize the swing equations around an equilibrium point.
3. Compute the transfer function from the input U to the output ω.
4. For which equilibria is the linearizes system stable?
5. Using the equilibrium point ((Π/6; ωs); 1), simulate the linearized system and the non-linear swing equations for di erent initial conditions. Comment on what you observe.

6. When a fault occurs in a transmission line the generator will either accelerate or decelerate. We will simulate this by using the initial value for ω to be 1% higher than ωs.

7. Design a controller to reduce by 50% the time to reach the equilibrium (under the initial conditions of the previous question). Show a plot of the evolution of the system when using the designed controller.

8. Keep increasing the value of ω until the system (swing equation+controller) becomes unstable. Compare with what happens when you do not use a controller.

9. Redesign your controller so that it stabilizes the angular velocity under faults that change the initial value of ω no more than 10% of its equilibrium value. Illustrate the operation of your controller with the relevant plots.

Electrical & Electronics, Engineering

  • Category:- Electrical & Electronics
  • Reference No.:- M9131202
  • Price:- $35

Priced at Now at $35, Verified Solution

Have any Question?


Related Questions in Electrical & Electronics

Question 1 a pnp transistor withnbspbeta 60 is connected

Question 1. A pnp transistor with β = 60 is connected in a common-base configuration as shown in figure P5.8 (a) The emitter is driven by a constant-current source with I E = 0.75 mA. Determine I B , I C , α, and V C . ( ...

Questions -problem 1 - solve for i0 in fig using mesh

Questions - Problem 1 - Solve for i 0 in Fig. using mesh analysis. Problem 2 - Use mesh analysis to find current i 0 in the circuit. Problem 3 - Use mesh analysis to find v 0 in the circuit. Let v s1 = 120 cos(100t+ 90 o ...

Question 1 in the voltage regulator circuit in figure p221

Question 1: In the voltage regulator circuit in Figure P2.21, V 1 = 20 V, V Z = 10 V, R i = 222Ω and P z (max) = 400 mW. (a) Determine I L, I z , and I L , if R L = 380Ω. (b) Determine the value of R L , that will establ ...

Nanotechnology engineering program assignment - passive

Nanotechnology Engineering Program Assignment - Passive Filters Q1) Determine what type of filter is in circuit shown. Calculate the cutoff frequency f c . Q2) Determine what type of filter is in circuit shown. Calculate ...

Question 1for the ce amplifier in figure 1 given the

Question 1 For the CE amplifier in Figure (1), given the following component parameters: Parameter Value β DC , β AC 150 V BE 0 . 7 V V CC 12 V R C 820 ? R E 1 100 ? R E 2 220 ? R 1 20 k? R 2 5 . 2 k? R L 100 k? C 1 , C ...

1 goalin this project you will solve a non-trivial design

1 Goal In this project you will solve a non-trivial design problem explicitly using the divide-and-conquer (D&C) approach. The main reason for using the D&C approach is the ease of the design process and the streamlined ...

Problem 1given a sequence xn for 0lenle3 where x0 1 x1 1

Problem # 1: Given a sequence x(n) for 0≤n≤3, where x(0) = 1, x(1) = 1, x(2) = -1, and x(3) = 0, compute its DFT X(k). (Use DFT formula, don't use MATLAB function) Problem # 2: Use inverse DFT and apply it on the Fourier ...

Questions -problem 1 - given the sinuosidal voltage vt 50

Questions - Problem 1 - Given the sinuosidal voltage v(t) = 50 cos(30t+10 o ) V, find: (a) the amplitude V m (b) the period T, (c) the frequency f and (d) v(t) at t = 10 ms. Problem 2 - A current source in a linear circu ...

1 a name the three major groups of contamination and

1. (a) Name the three major groups of contamination and briefly describe their physical characteristics. (b) Where do the above contamination types come from? Give one example of each. 2. Name two processes metrics which ...

Assignment -problem 1 -a consider the simplified dc system

Assignment - Problem 1 - a) Consider the simplified dc system shown in Fig. 1. Only one converter is modeled, with the remote end represented by a dc source. The ac system is rated at 345 kV, with the converter transform ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As