Ask Biology Expert

Foot-and-mouth disease

Foot-and-mouth disease (FMD) is an extremely contagious viral disease of cloven footed animals most notably cattle, pig and sheep. It is well known for its economic consequences due to restriction on the trade in animals and animal products from countries harboring it. Though rarely fatal in adult animals, it ranks first in the Office International des Epizooties (OIE) diseases  owing to nearly cent percent morbidity, rapid spread, severe decrease in livestock production, calf mortality and trade restrictions on animals and livestock products from FMD positive countries. There is upto 25% loss of livestock productivity due to reduced growth rate, decreased milk production and crippled agricultural draught power in developing countries like India. Furthermore, prolonged convalescence, short term immunity with no cross protection between different serotypes of the virus and carrier status complicates the control and eradication of this devastating disease. The disease is characterized by fever, formation of vesicles and blisters in the mouth, udder, teats and on the skin of the inter-digital space in hooves of cloven footed animals. Imported and crossbred cattle suffer resulting in high morbidity, but low mortality. Buffaloes, sheep and goats are also susceptible to the disease. The disease spreads by direct contact or indirectly through infected water, manure, hay and pastures, and by the cattle attendants. It is known to spread through recovered animals, field rats, porcupines and birds. The air-borne transmission of the virus has also been established.

Epidemiology: FMD virus (FMDV), a member of the genus Apthovirus of the family Picornaviridae, is a single stranded positive sense virus with a RNA genome of ~8.5 Kb. The characteristic feature of FMDV, like other RNA viruses, is its diversity, which has been reflected by the presence of seven distinct serotypes O, A, C, Asia 1 and  South African Territories 1 (SAT 1), SAT 2 and SAT 3 with  multiple subtypes and topotypes within each serotype. The virus population replicates as a pool of related but non-identical genomes, termed viral quasispecies. Besides this, homologous recombination also plays an important role in the diversity of the virus. Recovery from infection with one type does not render the animal immune from infection with other type of the virus. Hence, repeated infection with foot and mouth disease can take place in the same animal or herd. FMDV is endemic in India and in recent years FMDV types O, A and Asia 1 have been encountered throughout the year. In terms of number of outbreaks caused, serotype O predominates in India followed by serotypes A and Asia 1 in that order. However, existence of serotype C has not been reported since 1995. Studies relating to antigenic and genetic characteristics of FMDV have indicated that type A virus is the most diverse serotype. it is common in Africa, Asia, Europe, South America, Japan and Philippines. USA is not having FMD since 1929. Australia and New Zealand have never had FMD.

Symptoms: The virus gains entry into the blood stream of animals through injury to the lining membrane of the mouth, tongue, intestines, clefts of hooves and other similar parts. The incubation period in natural infection is 2 to 5 days. In artificial infection, the temperature rises to 40oC to 40.5oC in 24 and 48 hr. On account of the presence of blisters in the mouth, the animal does not eat well and makes a characteristic smacking sound with profuse salivation. The animal looses appetite and body weight, the milk production is considerably reduced or stops completely. Vesicles may also develop in the interdigital skin and coronary band of the feet. It goes lame on account of the painful foot lesions. The virus also attacks internal organs such as stomach, heart and endocrine glands. Recovery from the disease takes place in about 3 weeks, but it is followed by a number of complications, viz. invasion by pus-forming bacteria, maggot formation and shedding of the hoof which may result in permanent deformity of the part and in lameness. Animals that have recovered from the disease are characterized by a dry and rough coat, with long hair. The animal cannot be put to hard work, especially in the sun and it gasps for breath, a condition known as 'panting' which is more severe in the crossbreds than in the indigenous breeds of cattle. If the wound exists for prolonged period of time, overgrowing of the hoof can occur. Pregnant animals can abort.

Diagnosis: Quick spread and the occurrence of lesions in the mouth and feet of affected animals are quite characteristic. The disease presents some similarity to rinderpest, from which it can be readily differentiated by the absence of diarrhoea and by the presence of foot lesions. Confirmation of the diagnosis is done by using the affected tongue epithelium or material from the foot lesions. Isolation of the virus, when necessary, is attempted by inoculating the suspected material into foot-pads of guinea-pigs, unweaned mice, cell culture or in cattle.

Demonstration of specific virus antigen in vesicular fluid or epithelial tissue suspension is used for the identification of the virus type. The virus propagated in suitable cell-culture system can also be used for demonstration of the type specific antigen. Besides the conventional tests, like micro-complement fixation and micro- neutralization, the micro ELISA and its various modifications are routinely used for the diagnosis of the disease. Molecular techniques viz. nucleic acid hybridization with specific probes, antigen capture PCR and nucleotide sequencing have been used for precise diagnosis and for strain differentiation. In sero-epidemiological surveys, tests for demonstration of type-specific neutralizing antibodies and group specific virus infection associated (VIA) antigen are often used. Quantitative tests for assay of antibodies using c-ELISA with polyclonal and monoclonal antibodies have been standardized and applied for seromonitoring purposes.

Differential diagnosis: The diseases to be differentiated include vesicular stomatitis, Vesicular exanthema, bluetounge, bovine viral diarrhoea and rinderpest. The details of animal inoculation tests for differential diagnosis are as given here.

Sp of animal

F M D

Vesicular stomatitis

Vesicular exanthema

Bluetongue

Cattle

Pig

Sheep and goat

Horse

+

+

+

-

+

+

+

+

-

+

-

-

+

-

+

-

Treatment: No therapeutic agent has been found till now to cure foot-and-mouth disease. The use of drugs by field workers is resorted to only as a measure of aiding in the natural process of recovery. Thus, the external application of antiseptics contributes to the healing of the ulcers and to ward off the attacks by flies.

Prevention and control: Prevention is the only dependable method of dealing with foot-and-mouth disease. In countries where the disease does not exist or where the incidence is very low, legislative action has made low rate of incidence of all suspected cases of the foot-and-mouth disease. The usual measures adopted in these countries are slaughtering of all affected and in-contact animals, a thorough disinfection of all utensils and clothes of attendants and a strict watch over animals in the neighboring areas. The slaughtered animals are buried at least 4-5 m deep in the ground and covered with lime and earth. The affected premises are not used for at least 30 days and are tested for infectivity at the end of this period by allowing small groups of animals into them.

The adoption of a policy of slaughter involving cattle is impracticable in countries like India. Besides, hygienic measures, the method of control employed in this country rests with selective vaccination. The vaccines used in India are all killed vaccines. Quadrivalent BHK-21 cell cultured, formaline or BEI inactivated, aluminium- hydroxide gel absorbed or oil adjuvanted foot-and-mouth disease virus vaccines have been developed and produced in India. These have proved to be very effective in controlling the disease when carried out systematically. Research is also being done in recent years to improve upon the vaccine, particularly to reduce the dose and cost and to incorporate suitable virus strains. Facilities have also been established for the application of bio-technological innovations like DNA recombinant technology for possible improvement of diagnostics and vaccines. Use of better inactivating agents, adjuvant and quality assurance are other aspects of research undertaken on this vaccine.

On account of the 3 types of viruses (O, A and Asia-1) causing it, FMD is encountered periodically. It is, therefore, necessary to carry out vaccination with a polyvalent vaccine regularly. Heavy milch animals and exotic breeds of cattle bred for milk should be protected regularly. It is advisable to carry out 2 vaccinations at an interval of 4 - 6 months. Concentrated oil adjuvant vaccines with BEI inactivation of virus and 3 ml dose are in use in India. There may be a swelling at the site of inoculation, which may persist for some time and disappear later without any discomfort to the animal.

Biology, Academics

  • Category:- Biology
  • Reference No.:- M9508155

Have any Question?


Related Questions in Biology

Case study question -case study - mary 21 years old

Case Study Question - Case Study - Mary, 21 years old, presented to the hospital emergency department with an infected laceration on her left foot. Mary was at a beach resort four days ago, when she trod on a broken glas ...

Assignment -the upper-case blue letters are the 14th exon

Assignment - The upper-case, blue letters are the 14th exon (of 20) in the Hephl1 gene in mice. The lower-case (black) letters are from the flanking introns.  The highlighted bases indicate primers that may be used to ge ...

Question - a pure strain of mendels peas dominant for all

Question - A pure strain of mendel's peas, dominant for all seven of his independently assorting genes, was testcrossed. How many different kinds of gametes could the F1 PRODUCE?

Igfbp2 rbp4 and factor d post bariatric surgeryigfbp2 what

IGFBP2/ RBP4 and Factor D Post Bariatric Surgery IGFBP2 ( what the normal physiological action in the body? And how it affectedby obesity? andpost bariatric surgery?) RBP4 (what the normal physiological action in the bod ...

Assignment on nutrition - q1 task you need to select 2

Assignment on Nutrition - Q1. Task: You need to select 2 different age groups of your choice. You will need to plan balanced meals with snacks for a day. Once you have laid out the meal plan you need to: Explain why the ...

Question - gene cloning a please write the steps to clone

Question - Gene Cloning a) Please write the steps to clone the protease gene from Bacillus strain whose genome sequence is not known. b) Express the protease gene to obtain the enzyme in high yield, please plan your prot ...

Instructions address each question below as it relates to

Instructions: Address each question below as it relates to the caw study given. A patient was brought to the Emergency Department by ambulance with two arrow wounds. One arrow is still in the patient on the left side; en ...

Use of molecular tools and bioinforrnatics in the diagnosis

Use of Molecular Tools and Bioinforrnatics in the Diagnosis Characterization of Enteric Pathogens from a Case Study Purpose: The purpose of this project is to familiarize the student with modern molecular tools and bioin ...

Experiment 1 staining video1 open the media player by

Experiment 1: Staining Video 1. Open the Media Player by clicking on the film-strip button in the lower left of the lab's window frame, as shown below. The Media Player is a repository of images, videos, saved snapshots, ...

Chosen dr jan nolta- stem cell researcher head of uc davis

Chosen Dr. Jan Nolta- Stem Cell Researcher Head of UC Davis Stem Cell Program Director Topic Background: early Stem cells have the ability to develop into many different types of cells. Stem Cell Research is not without ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As