Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Electrical & Electronics Expert

Explain temperature dependence of electrical resistivity and conductivity in semiconductors.

The electrical conductivity of the semiconductors changes considerably with temperature changes. At absolute zero, this behaves as an insulator. And at room temperature, due to thermal energy, several of the covalent bonds of the semiconductor break. The breaking of bonds sets those electrons free that are engaged in the formation of such bonds. It results in few free electrons. All these electrons constitute a small current if potential is applied across the semiconductor crystal. It demonstrates the conductivity for intrinsic semiconductor increases along with increase in temperature as specified by η=A exp(-Eg/2kT), here η is the carrier concentration, T is the temperature, Eg is the energy band gap and A is constant. If in extrinsic semiconductors, addition of small amount of impurities creates a large number of charge carriers. That number is so large that the conductivity of an extrinsic semiconductor is a lot of times more than an intrinsic semiconductor at the room temperature. In n-type semiconductor each donor has donated their free electrons at room temperature. The additional thermal energy only serves to raise the thermally generated carriers. It increases the minority carrier concentration. A temperature is reached while the number of covalent bonds which are broken is so large which the number of holes is almost equal to the number of electrons. After that the extrinsic semiconductor behaves as intrinsic semiconductor.

Electrical & Electronics, Engineering

  • Category:- Electrical & Electronics
  • Reference No.:- M9549719

Have any Question?


Related Questions in Electrical & Electronics

Nanotechnology engineering - resonance circuits questions

Nanotechnology Engineering - Resonance Circuits Questions - Q1) A series RLC network has R = 2KΩ, L = 40mH and C = 1μF. Calculate the impedance at resonance and at one-fourth, one-half, twice, and four times the resonant ...

A four-pole star-connected squirrel-cage induction motor

A four-pole, star-connected, squirrel-cage induction motor operates from a variable voltage 50 Hz three-phase supply. The following results were obtained as the supply voltage was gradually reduced with the motor running ...

Case studythis assignment consists of a written report of

CASE STUDY This assignment consists of a written report of approximately 1000 words and any diagrams in which you are asked to critically compare different process methods used to achieve the same result and show an awar ...

Question 1 in the voltage regulator circuit in figure p221

Question 1: In the voltage regulator circuit in Figure P2.21, V 1 = 20 V, V Z = 10 V, R i = 222Ω and P z (max) = 400 mW. (a) Determine I L, I z , and I L , if R L = 380Ω. (b) Determine the value of R L , that will establ ...

1 a name the three major groups of contamination and

1. (a) Name the three major groups of contamination and briefly describe their physical characteristics. (b) Where do the above contamination types come from? Give one example of each. 2. Name two processes metrics which ...

Questions -problem 1 - solve for i0 in fig using mesh

Questions - Problem 1 - Solve for i 0 in Fig. using mesh analysis. Problem 2 - Use mesh analysis to find current i 0 in the circuit. Problem 3 - Use mesh analysis to find v 0 in the circuit. Let v s1 = 120 cos(100t+ 90 o ...

Assignment -problem 1 -a consider the simplified dc system

Assignment - Problem 1 - a) Consider the simplified dc system shown in Fig. 1. Only one converter is modeled, with the remote end represented by a dc source. The ac system is rated at 345 kV, with the converter transform ...

Advanced computational techniques in engineering assignment

Advanced Computational Techniques in Engineering Assignment - Optimisation For this assignment, you are required to carry out the process of attempting to solve different optimisation problems. For each question, you are ...

Assignment -consider a common emitter amplifiernow lets say

Assignment - Consider a common emitter amplifier: Now let's say that R B and R C do a fine job at DC biasing the BJT but they are large so they can be neglected for small signal (AC) analysis. In that case, the equivalen ...

Questions -problem 1 - given the sinuosidal voltage vt 50

Questions - Problem 1 - Given the sinuosidal voltage v(t) = 50 cos(30t+10 o ) V, find: (a) the amplitude V m (b) the period T, (c) the frequency f and (d) v(t) at t = 10 ms. Problem 2 - A current source in a linear circu ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As