+1-415-315-9853

info@mywordsolution.com

## Engineering

 Civil Engineering Chemical Engineering Electrical & Electronics Mechanical Engineering Computer Engineering Engineering Mathematics MATLAB Other Engineering Digital Electronics Biochemical & Biotechnology

Part A

Consider a point-to-point communication link where a base station (BS) communicates with an user directly. In this point-to-point link, it is assumed that the signal transmission is subject to path loss and log-normal shadowing. Some parameters of such a point-to-point link are given as follows:
The carrier frequency is fc = 1.5 GHz, the reference distance is d0 = 1 m, and the unitless constant K is determined from the free space path gain formula at this d0 given by K dB = 20 log10 ( λ/π4d0), where  λ is the wavelength of carrier frequency. The distance between the BS and the user is denoted as d and the path loss exponent between them is denoted as η  . The variance of log-normal shadowing is σψ2 = 15 dB.
Based on the parameters clarified above, please complete the following problems:

a) Describe “What are path loss and shadowing in wireless propagation?” In the description, please describe the reasons of these two phenomenons and the impact of these phenomenons on wireless transmission.

b) If the transmit power is denoted as PT and the minimum power requirement is denoted as Pth, what is the outage probability of the transmission over the combined path loss and log-normal shadowing model?

c) find out the outage probabilities for the following systems: i) d = 1 km,   η = 3, PT = 100 dB, and Pth = -40 dB; ii) d = 1:5 km,  η= 2:5, PT = 115 dB, and Pth = -10 dB; iii) d = 800 m, η= 2, PT = 95 dB, and Pth = -5 dB. If 1% is a typical outage probability target in wireless system designs, which system needs to be re-designed? How to re-design this system?

Part B

Consider a point-to-point communication link where a base station (BS) communicates with an user directly. In this point-to-point link, it is assumed that the signal transmission is subject to path loss and Rayleigh fading.

a) Describe “What is Rayleigh fading?”

b) If the reference distance is normalized as d0 = 1 and the variance of the noise at the user is 1, use Matlab to plot the simulated outage probabilities versus transmit power PT in a log-log scale for the following systems: i) d = 0.8, η = 3.5, and Pth = 0 dB; ii) d = 1.2, η=2.5, and Pth = 5 dB. Please adopt the range of the transmit power from -10 dB to 20 dB and the range of the outage probability from 100 to 103 in the plotted figure. Also, please include the analytical result for the outage probability in the figure and compare your simulations with the analytical result.
NB: In Rayleigh fading, the analytical outage probability is given by Pout = 1-ePth/γ , where γ is the average received SNR.

Part C

Consider a dual-hop communication system. In such a system, the direct transmission between the BS and the user is not available; therefore, a relay station with CSI-based gain amplify-and-forward (AF) relaying protocol is deployed between them to help their transmission. For this system, the following assumptions are made:

i)The distance between the BS and the user is normalized to one, i.e., dSD = 1. The relay is placed between them such that dSR + dRD = 1, where dSR is distance between the BS and the relay, and dRD is the distance between the relay and the user.

ii) The total transmit power PT are dynamically allocated to the BS with PS = nPT and to the relay with PR = (1-n) PT , where 0 < n < 1. The variances of the noises at the relay and at the receiver are 1.

iii) The path loss exponent between the BS and the relay is ηSR = 2 and the path loss exponent between the relay and the user is ηRD = 3.
Based on the parameters clarified above, please complete the following problems:

a) If the relay station is placed at halfway between the BS and the user, i.e., dSR = dRD = 0.5, and the total transmit power is equally allocated between the BS and the user, i.e., PS = PR = 0.5PT , plot the simulated outage probabilities versus transmit power PT in a log-log scale. In this plot, the outage probability is defined the probability that the end-to-end SNR γeq = (γSR γRD) /(γSR+ γRD+1) drop below an SNR threshold γth. Here, γth = 0 dB is adopted. Also, please include the analytical result for the outage probability in the figure and compare your simulations with the analytical result. Confirm whether the analytical result is accurate and describe the reason.
Please adopt the range of the transmit power from -5 dB to 25 dB and the range of the outage probability from 100 to 10-3 in the plotted figure. NB: In Rayleigh fading, the analytical outage probability for dual-hop transmission is given by:

Pout   1 - 2γth/√γ‾SRγ‾RD e -γth ( 1/γ‾SR + 1/γ‾RD ) K1 ( 2γth √γ‾SRγ‾RD )
where γ‾SR is the average received SNR between the BS and the relay and γ‾RD is the average received SNR between the relay and the user.

b) If the relay station is placed at halfway between the BS and the user, i.e., dSR = dRD = 0.5. Assume that the total transmit power is PT=20 dB. Plot the analytical and simulated outage probabilities versus power allocation factor n, n ε (0, 1), in a log-log scale for three SNR thresholds: i) γth = -5 dB, ii) γth = 0 dB, and iii) γth = 5 dB. Based on the figure, please find the optimal power allocation factor for each SNR threshold. In this plot, please adopt the end-to-end SNR as γeq = (γSRγRD/γSR+γRD).

c) If the total transmit power is allocated between the BS and the user as PS = 0.6PT and PR = 0.4PT . Assume that the SNR threshold is γth = 0 dB. Plot the analytical and simulated outage probabilities versus dSR, dSR ε (0,1), in a log-log scale for three total transmit power: i) PT = 20 dB, ii) PT = 25 dB, and iii) PT = 30 dB. Based on the figure, please find the optimal BS-relay distance for each total transmit power. In this plot, please adopt the end-to-end SNR as γeq = (γSRγRD/γSR+γRD).

NB: The end-to-end SNR adopted in b) and c) is different from that adopted in a).

Part D

Consider a cooperative communication system where the direct transmission between the BS and the user is available. In such a system, a relay station with CSI-based gain amplify-and-forward (AF) relaying protocol is deployed between them to improve their transmission. The destination adopts cooperative selection diversity (CSD) to combine the received signals such that the signal with the higher quality between the direct link and the relay link is selected. For this system, the following assumptions are made:

i) The distance between the BS and the user is normalized to one, i.e., dSD = 1. The relay is placed between them such that dSR + dRD = 1, where dSR is distance between the BS and the relay, and dRD is the distance between the relay and the user.

ii) The total transmit power PT are dynamically allocated to the BS with PS = nPT and to the relay with PR = (1-n) PT , where 0 < n < 1. The variances of the noises at the relay and at the receiver are 1.

iii) The path loss exponent between the BS and the relay is ηSR = 2, the path loss exponent between the relay and the user is ηRD = 3, and the path loss exponent between the BS and the user is  ηSD = 4. Based on the parameters clarified above, please complete the following problems:

The relay station is placed between the BS and the user with dSR = 0.55 and dRD = 0.45. The total transmit power is allocated between the BS and the user such that PS = 0.65PT and PR = 0.35PT . Plot the three simulated and analytical outage probabilities versus transmit power PT in a log-log scale: i) Outage probability for the direct path only; ii) Outage probability for the relay path only; and iii) Outage probability for CSD. In this plot, please adopt the end-to-end SNR for the relay path as  γeq = (γSRγRD/γSR+γRD). and adopt γth = 0 dB. Also, please include the analytical result for the outage probability in the figure.
Compare these three outage probabilities and comment on the diversity gains of three outage probabilities based on the plots. Please adopt the range of the transmit power from 0 dB to 20 dB and the range of the outage probability from 100 to 10-4 in the plotted figure.

Electrical & Electronics, Engineering

• Category:- Electrical & Electronics
• Reference No.:- M9718

Have any Question?

## Related Questions in Electrical & Electronics

### The performance of a journal bearing around a rotating

The performance of a journal bearing around a rotating shaft is a function of the following variables: Q, the rate of flow lubricating oil to the bearing in volume per unit time; D, the bearing diameter; N, the shaft spe ...

### Using the frequency sampling method design a linear phase

Using the frequency sampling method, design a linear phase bandstop FIR filter with cutoff frequencies Ω c1 = π/3, Ω c2 = π/2, and L h = 13. Realize the design as a frequency sampling filter.

### 1 in pastry assume the address space is 16 and that b 2

1. In Pastry, assume the address space is 16 and that b = 2. How many digits are in an address space? List some of the identifiers. 2. In a Pastry network with m = 32 and b = 4, what is the size of the routing table and ...

### Consider the problem of identifying the nonlinear

Consider the problem of identifying the nonlinear discrete-time system in (9.9.4) using a raised-cosine RBF network. Let the number of past inputs be m = 1 and the number of past outputs be n = 1. Suppose the range of va ...

### 1 a 16-scale model of a torpedo is tested in a water tunnel

1. A 1/6-scale model of a torpedo is tested in a water tunnel to determine drag characteristics. What model velocity corresponds to a torpedo velocity of 20 knots? If the model resistance is 10 lb, what is the prototype ...

### Identify the variables associated with given problem and

Identify the variables associated with given Problem and find the dimensionless parameters. Problem The device in the schematic diagram below is a viscosity pump. It consists of a rotating drum inside of a stationary cas ...

Download the MATLAB program "ofdm_alloc.m", which simulates power and bit allocation for a 64 channel OFDM system, assuming that all channel symbol streams have equal power allocation P k = E [|s k [m]| 2 ] = 1, and that ...

### 1 state maxwells equations for static fields ina integral

1. State Maxwell's equations for static fields in (a) integral form, and (b) differential form. 2. Discuss the classification of static fields with reference to subsets of Maxwell's equations. 3. Outline the steps involv ...

### In example 612 we represented the function in fig 623 by

In Example 6.12, we represented the function in Fig. 6.23 by Legendre polynomials. a. Use the results in Example 6.12 to represent the signal g(t) in Fig. P6.5-8 by Legendre polynomials. b. Compute the error energy for t ...

### 1 discuss briefly the motional emf concept2 what is lenzs

1. Discuss briefly the motional emf concept. 2. What is Lenz's law? 3. How would you orient a loop antenna in order to obtain maximum signal from an incident electromagnetic wave which has its magnetic field linearly pol ...

• 13,132 Experts

## Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

### WalMart Identification of theory and critical discussion

Drawing on the prescribed text and/or relevant academic literature, produce a paper which discusses the nature of group

### Section onea in an atwood machine suppose two objects of

SECTION ONE (a) In an Atwood Machine, suppose two objects of unequal mass are hung vertically over a frictionless

### Part 1you work in hr for a company that operates a factory

Part 1: You work in HR for a company that operates a factory manufacturing fiberglass. There are several hundred empl

### Details on advanced accounting paperthis paper is intended

DETAILS ON ADVANCED ACCOUNTING PAPER This paper is intended for students to apply the theoretical knowledge around ac

### Create a provider database and related reports and queries

Create a provider database and related reports and queries to capture contact information for potential PC component pro