Ask Biology Expert

Assignment: Nerve Signals

The nervous system is responsible for communication and coordination of all organ systems within a body. To achieve this, the neurons - cells that make up the nervous system - must be able to pass signals from one to another. To understand how a neuron transmits a signal, it is important be reminded of the structure of the neuron. The dendrites receive chemical or electrical signals from the axon terminals of other neurons. The cell body contains the nucleus, lysosomes and ribosomes. Most neurons have a single axon which sends signals to other neurons. These signals are carried down the axon into the axon terminals which are small branches of the axon. The axon terminals form synapses, or connections, with other cells. The space between two nerve cells is called the synaptic cleft.

When a neuron is not transmitting a signal, it is at rest. During this rest period, the cytoplasm just inside of the neuron contains two important molecules: positively charge potassium ions (K+) and negatively charged protein molecules. (A positively charged ion occurs when an atom loses one or more electrons. Negatively charged molecules form when the molecule gains extra electrons.) The cytosol contains more negatively charged protein molecules than potassium ions, so the inside of the neuron is negativeincharge. The fluid just outside of the neuronispositivelycharged. This positive charge is due to the presence of positively charged ions, likesodium(Na+). Thecellmembranestores energy by holding these opposite charges apart. This difference in charge is referred to as an electrical potential. When the neuron is at rest, this difference in charge is referred to as the restingpotential.

Sending a signal through a neuron - Action Potential

1332_Sending a signal through a neuron.jpg

A stimulus (light, sound, touch or the presence of a chemical) can generate an electrical nerve signal by reversing the charges inside and outside of the neuron's membrane. c Action potential occurs when specialized protein channels, called ion channels, open and allow the positively charged sodium ions to diffuse into the cell. This influx of positive ions causes the inside of the cell to become more positive than the outside of the cell. This reversal of charge then triggers the sodium channels to close, blocking the diffusion of Na+. Meanwhile, another type of ion channel opens allowing potassium ions (K+) to diffuse out of the cell. This causes the charge on the inside of the cell to become negative again. The neuron has returned to resting potential.

To transmit the signal throughout the neuron, the action potential must travel the length of the neuron. The changes in charge in one area of the neuron trigger the opening of Na+ channels is membrane just down-stream of the action potential. As a result, an action potential is generated in the adjacent region and is quickly followed by a return to resting potential. The action potential travels down the neuron like dominoes falling over; each reversal in charge triggers the opening of ion channels in the adjacent membrane.

Action potentials are the same no matter what stimulus caused them. Your central nervous system (CNS) can detect different intensity of different stimuli by interpreting the frequency of action potentials traveling down the neuron. For example, if you tap your finger on your desk softly, your CNS will receive fewer action potentials per second than if you tapped your finger very hard.

Passing a signal from one neuron to another - Chemical synapse

If the nervous system is going to function properly, neurons must be able to communicate with each other by passing signals to one another. This occurs at a synapse, or relay point between two cells. The most common type of synapse in the nervous system of animals is chemical synapse. Chemical synapse occurs in the narrow space between the axon terminal of the sending neuron and the dendrite of the receiving neuron.

2098_Neurotransmitter.jpg

When action potential reaches the axon terminal, it is converted into a chemical signal. This chemical signal comes in the form of a neurotransmitter (a chemical that carries information from one nerve cell to another). Once the action potential arrives at the end of the neuron, it stimulates vesicles containing a neurotransmitter. The vesicle will then fuse with the cell membrane and release the neurotransmitter into the synaptic cleft using the process of exocytosis. The released neurotransmitters diffuse across the synaptic cleft and bind to receptor molecules, which are proteins attached to ion channels within the membrane of the receiving cell. The binding of the neurotransmitters to the receptor molecules causes the ion channels to open, allowing Na+ to diffuse into the cell. This influx of Na+ ions causes an action potential in the receiving neuron. The neurotransmitter is then either broken down or transported back to the sending neuron to be reused. The absence of neurotransmitters in the synaptic cleft causes the ion channels to close and the signal toend.

AnalysisQuestions

Directions: Answer question based on readings

1. What term is used to describe a neuron that is not transmitting asignal?

2. Describe the conditions inside and outside of a neuron during restingpotential.

3. Describe the conditions inside and outside of a neuron during action potential.

4. What causes a neuron to change from resting potential to actionpotential?

5. What causes a neuron to return to a resting potential from an actionpotential?

6. How is a signal transmitted through a singleneuron?

7. What is aneurotransmitter?

8. How are neurotransmitters secreted into the synaptic cleft?

9. How does a neurotransmitter cause an action potential in a receivingneuron?

10. How is the signal between neurons stop?

Biology, Academics

  • Category:- Biology
  • Reference No.:- M92725433
  • Price:- $45

Priced at Now at $45, Verified Solution

Have any Question?


Related Questions in Biology

Case study question -case study - mary 21 years old

Case Study Question - Case Study - Mary, 21 years old, presented to the hospital emergency department with an infected laceration on her left foot. Mary was at a beach resort four days ago, when she trod on a broken glas ...

Assignment -the upper-case blue letters are the 14th exon

Assignment - The upper-case, blue letters are the 14th exon (of 20) in the Hephl1 gene in mice. The lower-case (black) letters are from the flanking introns.  The highlighted bases indicate primers that may be used to ge ...

Question - a pure strain of mendels peas dominant for all

Question - A pure strain of mendel's peas, dominant for all seven of his independently assorting genes, was testcrossed. How many different kinds of gametes could the F1 PRODUCE?

Igfbp2 rbp4 and factor d post bariatric surgeryigfbp2 what

IGFBP2/ RBP4 and Factor D Post Bariatric Surgery IGFBP2 ( what the normal physiological action in the body? And how it affectedby obesity? andpost bariatric surgery?) RBP4 (what the normal physiological action in the bod ...

Assignment on nutrition - q1 task you need to select 2

Assignment on Nutrition - Q1. Task: You need to select 2 different age groups of your choice. You will need to plan balanced meals with snacks for a day. Once you have laid out the meal plan you need to: Explain why the ...

Question - gene cloning a please write the steps to clone

Question - Gene Cloning a) Please write the steps to clone the protease gene from Bacillus strain whose genome sequence is not known. b) Express the protease gene to obtain the enzyme in high yield, please plan your prot ...

Instructions address each question below as it relates to

Instructions: Address each question below as it relates to the caw study given. A patient was brought to the Emergency Department by ambulance with two arrow wounds. One arrow is still in the patient on the left side; en ...

Use of molecular tools and bioinforrnatics in the diagnosis

Use of Molecular Tools and Bioinforrnatics in the Diagnosis Characterization of Enteric Pathogens from a Case Study Purpose: The purpose of this project is to familiarize the student with modern molecular tools and bioin ...

Experiment 1 staining video1 open the media player by

Experiment 1: Staining Video 1. Open the Media Player by clicking on the film-strip button in the lower left of the lab's window frame, as shown below. The Media Player is a repository of images, videos, saved snapshots, ...

Chosen dr jan nolta- stem cell researcher head of uc davis

Chosen Dr. Jan Nolta- Stem Cell Researcher Head of UC Davis Stem Cell Program Director Topic Background: early Stem cells have the ability to develop into many different types of cells. Stem Cell Research is not without ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As