Ask Biology Expert

All cells are surrounded by a phospholipid bilayer membrane. The function of the phospholipid bilayer is to act as a barrier between the living cell and the environment. The phospholipid bilayer also regulate the passage of solutes into and out of the cell. The phospholipid bilayer membrane can differentiate which solutes to move in or not. One process by which solutes enter cells is by diffusion, which is the movement of solutes from high concentration to low concentration. Another process is osmosis, which is when water molecules diffuse across a cell membrane from regions of low solute concentration to high solute concentration.

Diffusion

Diffusion is defined as the movement of solute molecules from a region of high concentration to low concentration. To learn about some of the factors that affect the rate of diffusion, we will measure the distances that two colored solutes move through a gelatin agar medium. The gelatin medium is composed of agar and water; and mimics an aqueous system. The experimental plan is that we will add drops of different solutes into small test tubes containing agar. The tubes will be incubated under different environmental conditions for about 1 hour. We will compare the relative diffusion rates of the solutes by measuring the distances traveled by the solutes in each test tubes. The result is that longer distances traveled by the solutes indicate a higher diffusion rate and shorter distances traveled indicate a slower diffusion rate.

The solutes that we will used are: KMnO4 ( potassium permanganate, molecular mass = 158 grams/mole) and a dye called Aniline Blue ( molecular mass = 738 grams/mole).
The experiment will address the following problems:

1. How will increasing temperature affect diffusion rate?
2. How will increasing solute molecular weight affect diffusion rate?
3. How will increasing solute concentration affect diffusion rate?

Procedure:

1. Take 6 agar-filled test tube and label 1- 6.
2. Add the different solutes into the test tube 1- 6 using table 1 as a guide.

Table 1

Tube # Solute Incubation Distance Moved (mm)
1 0.1 M KMnO4 4C 4
2 0.1 M KMnO4 room temp 7
3 0.1 M KMnO4 35C 12
4 0.1 M An. Blue room temp 6
5 0.02 M An. Blue room temp 8
6 0.01 M An. Blue room temp 9

Osmosis is when water molecules diffuse across a cell membranes from regions of low solute concentration to high solute concentration. Water molecule are in constant motion, and the rate of water is dependent on the temperature. Many cells embark on a situation in which the total concentration of solutes is different on the inside and on the outside of the cell. When this occurs, water will move into or out of the cell depending on the relative concenration of solutes on either side of the membrane. The solution on the side of the membrane where solute concentration is less than that of the other side is referred to as being hypotonic. The solution on the side of the membrane where solute concentrations is greater than that of the other side is referred to as being hypertonic. When the solute concentration is the same on both sides of the membrane, the solution is said to be isotonic.

To learn about osmosis, we will use a synthetic permeable membrane called a dialysis tubing to create "artificial cells". We will fill these dialysis bags ( artificial cells) with solutions of various concentration and place them in beakers with solutions of varying concentration.

Procedure:

1. Take 4 beakers label each with number 1, 2, 3, or 4.
2. Fill these beakers with bathing solutions that correspond with numbers on beakers. Volume here should be 200 ml
3. Obtain 4 strips of dialysis tubing and soak them in distilled water.
4. Use table 2 to create the dialysis bags with appropriate contents listed in the table.
5. After weighing and recording the weights of the bags, place them into the beaker with the number corresponding to the bag #.
6. Incubate the bags for at least one hour. At the end of the incubation time, blot the excess solution to the surface of each bag, and weigh and record the weights.

Table 2

Bag or Bag Content Bathing Beginning Ending
Beaker # (approx. 10 ml) Solutions Weight (g.) Weight (g.)
1 water 40% sucrose 10 6
2 water water 10 10
3 20% sucrose water 10 15
4 40% sucrose water 10 20

Biology, Academics

  • Category:- Biology
  • Reference No.:- M925225

Have any Question?


Related Questions in Biology

Case study question -case study - mary 21 years old

Case Study Question - Case Study - Mary, 21 years old, presented to the hospital emergency department with an infected laceration on her left foot. Mary was at a beach resort four days ago, when she trod on a broken glas ...

Assignment -the upper-case blue letters are the 14th exon

Assignment - The upper-case, blue letters are the 14th exon (of 20) in the Hephl1 gene in mice. The lower-case (black) letters are from the flanking introns.  The highlighted bases indicate primers that may be used to ge ...

Question - a pure strain of mendels peas dominant for all

Question - A pure strain of mendel's peas, dominant for all seven of his independently assorting genes, was testcrossed. How many different kinds of gametes could the F1 PRODUCE?

Igfbp2 rbp4 and factor d post bariatric surgeryigfbp2 what

IGFBP2/ RBP4 and Factor D Post Bariatric Surgery IGFBP2 ( what the normal physiological action in the body? And how it affectedby obesity? andpost bariatric surgery?) RBP4 (what the normal physiological action in the bod ...

Assignment on nutrition - q1 task you need to select 2

Assignment on Nutrition - Q1. Task: You need to select 2 different age groups of your choice. You will need to plan balanced meals with snacks for a day. Once you have laid out the meal plan you need to: Explain why the ...

Question - gene cloning a please write the steps to clone

Question - Gene Cloning a) Please write the steps to clone the protease gene from Bacillus strain whose genome sequence is not known. b) Express the protease gene to obtain the enzyme in high yield, please plan your prot ...

Instructions address each question below as it relates to

Instructions: Address each question below as it relates to the caw study given. A patient was brought to the Emergency Department by ambulance with two arrow wounds. One arrow is still in the patient on the left side; en ...

Use of molecular tools and bioinforrnatics in the diagnosis

Use of Molecular Tools and Bioinforrnatics in the Diagnosis Characterization of Enteric Pathogens from a Case Study Purpose: The purpose of this project is to familiarize the student with modern molecular tools and bioin ...

Experiment 1 staining video1 open the media player by

Experiment 1: Staining Video 1. Open the Media Player by clicking on the film-strip button in the lower left of the lab's window frame, as shown below. The Media Player is a repository of images, videos, saved snapshots, ...

Chosen dr jan nolta- stem cell researcher head of uc davis

Chosen Dr. Jan Nolta- Stem Cell Researcher Head of UC Davis Stem Cell Program Director Topic Background: early Stem cells have the ability to develop into many different types of cells. Stem Cell Research is not without ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As