Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Electrical & Electronics Expert

Advantages of BJT over MOSFET:

BJTs have some benefits over MOSFETs for at least two digital applications. Very first, in high speed switching, they do not comprises the "larger" capacitance from gate, which while multiplied by the resistance of the channel provides the intrinsic time constant of the process. The intrinsic time constant places a boundary on the speed a MOSFET can operate at since higher frequency signals are filtered out. Widening the channel decreases the resistance of channel, but raises the capacitance by closely the same amount. Reducing the width of the channel increases the resistance, but decreases the capacitance by similar amount. R*C=Tc1, 0.5R*2C=Tc1, 2R*0.5C=Tc1. There is no way to minimize the intrinsic time constant for a specific process. Different processes by using different gate thicknesses, channel lengths, channel heights, and materials will have different intrinsic time constants. This problem is mostly prevented with a BJT as it does not have a gate.

The 2nd application in which BJTs have a benefit over MOSFETs stems from the first. While driving several other gates, called fan out, the resistance of the MOSFET is in series along with the gate capacitances of the other FETs, making a secondary time constant. Delay circuits make use of this fact to make a fixed signal delay by using a small CMOS device to send a signal to many other, several times larger CMOS devices. The secondary time constant could be minimized by raising the driving FET's channel width to reduce its resistance and decreasing the channel widths of the FETs being driven, reducing their capacitance. The drawback is that it raises the capacitance of the driving FET and increases the resistance of the FETs being driven, but generally these drawbacks are a minimal problem when as compared to the timing problem. BJTs are better capable to drive the other gates because they can output more current than MOSFETs, permitting for the FETs being driven to charge faster. Several chips use MOSFET inputs and BiCMOS outputs.

Electrical & Electronics, Engineering

  • Category:- Electrical & Electronics
  • Reference No.:- M9517378

Have any Question?


Related Questions in Electrical & Electronics

Questions -q1 a single-phase transformer rated 21 kv130 v

Questions - Q1. A single-phase transformer rated 2.1 kV/130 V, 7.8 kVA has the following winding parameters: r1= 0.7Ω, x1 = 0.9Ω, r2 = 0.04Ω and x2 = 0.05Ω. Determine: a. The combined winding resistance ________ Ω and le ...

Electrical engineering questions -q1 two ideal voltage

Electrical Engineering Questions - Q1. Two ideal voltage sources designated as machines 1 and 2 are connected, as shown in the figure below. Given E 1 = 65∠0 o V, E 2 = 65∠30 o V, Z = 3Ω. Determine if Machine 1 is genera ...

Summative assessmentin 2017 sej101 assessment will consist

Summative Assessment In 2017 SEJ101 assessment will consist of nine tasks that will develop a portfolio of your assessed work. Throughout the trimester you will have the opportunity for feedback on all nine tasks before ...

Assignment - power distribution system transformerscomplete

Assignment - Power Distribution System Transformers Complete your calculations, drawings, and answers, neatly handwritten on these sheets and hand in at the start of lecture in week 6. Absolutely no late submissions will ...

1 goalin this project you will solve a non-trivial design

1 Goal In this project you will solve a non-trivial design problem explicitly using the divide-and-conquer (D&C) approach. The main reason for using the D&C approach is the ease of the design process and the streamlined ...

Assignment -problem 1 -a consider the simplified dc system

Assignment - Problem 1 - a) Consider the simplified dc system shown in Fig. 1. Only one converter is modeled, with the remote end represented by a dc source. The ac system is rated at 345 kV, with the converter transform ...

Assignment -consider a common emitter amplifiernow lets say

Assignment - Consider a common emitter amplifier: Now let's say that R B and R C do a fine job at DC biasing the BJT but they are large so they can be neglected for small signal (AC) analysis. In that case, the equivalen ...

Question 1 - for the transistor in the circuit shown in

Question 1 - For the transistor in the circuit shown in Figure, assume β = 120. Design the circuit such that I CQ = 0.15 mA and R TH = 200kΩ. What is the value of V CEQ ? Question 2 - (a) For the circuit shown in figure, ...

Problem 1 a two-phase servomotor has rated voltage applied

Problem 1: A two-phase servomotor has rated voltage applied to its excitation winding. The torque speed characteristic of the motor with Vc = 220 V, 60 Hz applied to its control phase winding is shown in Fig.1. The momen ...

Question 1for the ce amplifier in figure 1 given the

Question 1 For the CE amplifier in Figure (1), given the following component parameters: Parameter Value β DC , β AC 150 V BE 0 . 7 V V CC 12 V R C 820 ? R E 1 100 ? R E 2 220 ? R 1 20 k? R 2 5 . 2 k? R L 100 k? C 1 , C ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As