Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Electrical & Electronics Expert

1. If you want to push a merry-go-round and make it as easy as possible, where should you tell your friends to sit? Where should you push? Explain why?

2. What would happen to the data graphs (the ones we were printing in lab), if we tied the string around one of the smaller pulleys in this experiment? Explain why?

3. Explain why the angular velocity was constant over time at the second part of the experiment but it was not constant at the first part of the experiment. By the first part of the experiment, I mean the part which involved hanging masses. The angular velocities were not constant over time for all of the pegs. By second part of the experiment I mean the part that involved dropping the ring. Before dropping the ring the angular velocity was constant. Also, it was constant over time after dropping (only it had a lower value.)

4. We assumed that the cylinders were point masses for calculating inertia. We could have used the parallel axis theorem to do better. Test this for the two masses in hole 1 and compare (percent difference or error) the new Ical with the old one.

5. A 10kg baby is perched at the rim of a 40kg disk. The disk rotates freely in a horizontal plane at 1 rev/s. The baby crawls to point at the center of the disk. What is the frequency of rotation in rev/s when the baby arrives at the center (Assume the size of the baby and the frictional torques are negligibly small)?

6. What was the intercept of our final graph supposed to be? That's the I vs. r2 graph. Don't write number, just name.

Electrical & Electronics, Engineering

  • Category:- Electrical & Electronics
  • Reference No.:- M91524836
  • Price:- $30

Priced at Now at $30, Verified Solution

Have any Question?


Related Questions in Electrical & Electronics

Electrical engineering questions -q1 two ideal voltage

Electrical Engineering Questions - Q1. Two ideal voltage sources designated as machines 1 and 2 are connected, as shown in the figure below. Given E 1 = 65∠0 o V, E 2 = 65∠30 o V, Z = 3Ω. Determine if Machine 1 is genera ...

Advanced computational techniques in engineering assignment

Advanced Computational Techniques in Engineering Assignment - Optimisation For this assignment, you are required to carry out the process of attempting to solve different optimisation problems. For each question, you are ...

Questions -problem 1 - a series rlc network has r 2 komega

Questions - Problem 1 - A series RLC network has R = 2 kΩ, L = 40 mH and C = 1μF. Calculate the impedance at resonance and at one-fourth, one-half, twice, and four times the resonant frequency. Problem 2 - Design a serie ...

A four-pole star-connected squirrel-cage induction motor

A four-pole, star-connected, squirrel-cage induction motor operates from a variable voltage 50 Hz three-phase supply. The following results were obtained as the supply voltage was gradually reduced with the motor running ...

Assignment - power distribution system transformerscomplete

Assignment - Power Distribution System Transformers Complete your calculations, drawings, and answers, neatly handwritten on these sheets and hand in at the start of lecture in week 6. Absolutely no late submissions will ...

Research report1 read 3 to 4 journal articles about digital

Research report 1. Read 3 to 4 journal articles about digital control or industrial control, eg. one particular application, implementation aspect such as selection of sampling time, hardware etc. No text book example is ...

Problems -problem 1 - find v0 in the op amp circuit of fig

Problems - Problem 1 - Find v 0 in the op amp circuit of Fig. 1. Problem 2 - Compute i 0 (t) in the op amp circuit in Fig. 2 if v s = 4 cos(10 4 t). Problem 3 - If the input impedance is defined as Z in = v s /I s , find ...

1 a name the three major groups of contamination and

1. (a) Name the three major groups of contamination and briefly describe their physical characteristics. (b) Where do the above contamination types come from? Give one example of each. 2. Name two processes metrics which ...

Problem 1 a two-phase servomotor has rated voltage applied

Problem 1: A two-phase servomotor has rated voltage applied to its excitation winding. The torque speed characteristic of the motor with Vc = 220 V, 60 Hz applied to its control phase winding is shown in Fig.1. The momen ...

Assignment -consider a common emitter amplifiernow lets say

Assignment - Consider a common emitter amplifier: Now let's say that R B and R C do a fine job at DC biasing the BJT but they are large so they can be neglected for small signal (AC) analysis. In that case, the equivalen ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As