Ask Mechanical Engineering Expert

1. (a) Process water with a specific heat capacity of 4.182 kJ kg-1 K-1 flows at a rate of 0.050 kg s-1 through a heat exchanger where its temperature is increased from 16°C to 85°C. Heat is supplied by exhaust gases (mean specific heat capacity 1.075 kJ kg-1 K-1) which enter the heat exchanger at a temperature of 420°C. If the mass flowrate of the exhaust gases is 0.044 kg s-1, determine their outlet temperature.

(b) The heat exchanger in Question I (a) above is of the double-pipe type, and the fluids are in counter flow. If the overall heat transfer coefficient is 35 W m-2 K-1, calculate the size of the heat transfer surface.

(c) What would be the new heat transfer area if the fluids were in parallel flow?

(d) Describe what is wrong with the sketch of the temperature profiles for the parallel-flow heat exchanger shown in FIGURE 1 and draw the correct version.

1204_Calculate the size of the heat transfer surface.png

2. (a) The data in TABLE I below relates to a specific heat exchanger. A reliable colleague has looked up an effectiveness chart and says that the effectiveness in the given operating conditions is 0.82.

Data:

 

Hot fluid

Cold' fluid

Mass flowrate k8 s-1

0.7

0.6

Specific heat capacity kJ kg ICI

1.8

4.2

Inlet temperature

°C

140

15

Area of heat transfer surface 14 m2.

Overall heat transfer coefficient 360 W m-2 K-1. Determine:

(i) the two outlet temperatures

(ii) the heat transfer rate.

(b) Another colleague, who is not altogether reliable, has analysed the heat exchanger, referred to in Question 2 (a), using the correction-factor method and he claims that the correction factor is 0395. Confirm whether he is correct or not.

3. (a) My saturated steam at a temperature of 180°C is to be produced in a fire tube boiler from the cooling of 50 000 kg ha of flue gases from a pressurised combustion process. The gases enter the tubes of the boiler at 1600°C and leave at 200°C. The feed water is externally preheated to 180°C before entering the boiler.

The mean specific heat capacity of the flue gases is 1.15 Id kg-1 Ka. The latent heat of vaporisation of the water at 180°C is 2015 Id kg-1. Feed water temperature = 180°C.

Determine the amount of steam produced per hour, if the total heat loss is 10% of the heat available for steam raising.

(b) The overall heat transfer coefficient based on the outside area of the tubes is given as 54 W m-2 Ka. Determine the area of heat transfer required to perform this duty.

(c) The tubes within the boiler are to be 25 mm inside diameter with a wall thickness of 3 mm. The average flue gas velocity through the tubes to maintain the overall heat transfer coefficient value and to minimise pressure losses is to be more than 22 m s-1 and less than 28 m

Assuming that the average density of the flue gases is 1.108 kg m4, calculate:

(i) the minimum and maximum number of tubes in each pass

(ii) the overall length of tubes at each of these numbers of tubes 

(iii) the minimum number of tube passes in each case, if the length of a boiler tube is to be less than 5 metres.

 

Mechanical Engineering, Engineering

  • Category:- Mechanical Engineering
  • Reference No.:- M91267830
  • Price:- $110

Guranteed 48 Hours Delivery, In Price:- $110

Have any Question?


Related Questions in Mechanical Engineering

The aim of the project is to demonstrate certain aspects of

The aim of the project is to demonstrate certain aspects of engineering materials in different applications. The projects will be assessed on the basis of a written Research Report. The report should clearly show what yo ...

Force exerted by jet on moving cart1 you need to determine

Force Exerted By Jet On Moving cart. 1. You need to determine the velocity of water that comes out from the nozzle of this system. need the equation please formulate the equation. 2. This water will strike a small cart a ...

Mechanical engineering assignment task - solve the given

Mechanical Engineering Assignment Task - Solve the given problem. Task 1 - A spring with a one-turn loop of 40mm mean radius is formed from a round section of wire having 5 mm diameter. The straight tangential legs of th ...

Projectflow processing of liquor in a mineral refining

Project Flow Processing of Liquor in a Mineral Refining Plant The aim of this project is to design a flow processing system of liquor (slurry) in a mineral (aluminum) refining plant. Aluminum is manufactured in two phase ...

Heat transfer and combustionyou will need graph paper a

HEAT TRANSFER AND COMBUSTION You will need graph paper, a calculator, a copy of Appendix 1 from lesson HTC - 4 - 2 and access to steam tables to answer this TMA. 1. A fuel gas consists of 75% butane (C 4 H 10 ), 10% prop ...

Assignment -q1 explain the difference between the

Assignment - Q1. Explain the difference between the metacentric height of a ship during 'Partially Afloat condition and 'Free Floating' condition; aid a sketch to support your answer. Q2. With the aid of sketches, explai ...

Materials behaviour from atoms to bridges assignment -

Materials Behaviour from Atoms to Bridges Assignment - Distributed loads and static equilibrium (Please note: you should show your steps with necessary figures) Q1. Two beam sections are jointed at C and supported at A b ...

Questions -q1 a qualitative estimate of the effect of a

Questions - Q1. A qualitative estimate of the effect of a wind-tunnel contraction (Figure) on turbulent motion can be obtained by assuming that the angular momentum of eddies does not change through the contraction. Let ...

Assignment - machine learning for signal processingproblem

Assignment - Machine Learning for Signal Processing Problem 1: Instantaneous Source Separation 1. As you might have noticed from my long hair, I've got a rock spirit. However, for this homework I dabbled to compose a pie ...

Problem -a long pipe od 1413 mm id 1318 mm kp 20 wmk

Problem - A long pipe (OD = 141.3 mm, ID =131.8 mm, k p = 20 W/m.K) supplies hot pressurized liquid water at 400 K to a heater in a factory. The pipe has an insulation thickness of 100 mm. A new efficient heater replaces ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As