Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Electrical & Electronics Expert

01) A power amplifier model is described by the transfer function: 1754_kk.jpg

a)   Perform root locus design of a compensator to achieve: 1714_kk.jpg

b)   Modify the design to achieve zero steady-state error to a step input.

c)   Consider a tachometer feedback for the amplifier and design a rate feedback compensator: design the minor loop for ζ = 0.8; then, design the outer loop for ζ = 0.7. Plot the step response.

02) Consider the power amplifier model above.

a)   Choose a sample time T and obtain the pulse transfer function G(z).

b)   Use root locus plot with 'grid' to design a static compensator for 1 = 0.7. Plot the step response.

c)    Modify the compensator to achieve zero steady-state error to a step input. Plot the step response. Give the update rule for computer implementation of the compensator.

03) The model of an automobile is given as: G(s) - 28s+120s / S2 +7s +14

a)  Use frequency domain methods to design a lead-lag/PID compensator for the following specs:

1035_kk.jpg(open loop frequency response peak)

b) Choose a sample time T, and use bilinear transform to obtain an equivalent digital compensator. Plot and compare the step response for both compensators.

04) The state-space model of a dc motor is given as:

1201_kk.jpg

Consider the following parameter values:J = .01, b = .1,R = .5 , L= .001, Kt = kb = .025.

a)  Find a linear transformation to transform the model into controller form.

b)  Design a state feedback controller for closed-loop eigenvalues at -100, -500. Plot the step response of the compensated system.

c)  Design an integral controller for perfect tracking of the model. Choose the third eigenvalue at -0.1. Find the transfer function of the closed-loop system and plot the step response.

Electrical & Electronics, Engineering

  • Category:- Electrical & Electronics
  • Reference No.:- M91794510

Have any Question?


Related Questions in Electrical & Electronics

Problem 1given a sequence xn for 0lenle3 where x0 1 x1 1

Problem # 1: Given a sequence x(n) for 0≤n≤3, where x(0) = 1, x(1) = 1, x(2) = -1, and x(3) = 0, compute its DFT X(k). (Use DFT formula, don't use MATLAB function) Problem # 2: Use inverse DFT and apply it on the Fourier ...

Questions -problem 1 - determine the laplace transform ofa

Questions - Problem 1 - Determine the Laplace transform of: (a) cos(ωt + θ) (b) sin(ωt + θ) Problem 2 - Obtain the Laplace transform of each of the following functions: (a) e -2t cos(3t)u(t) (b) e -2t sin(4t)u(t) (c) e - ...

Nanotechnology engineering program assignment - passive

Nanotechnology Engineering Program Assignment - Passive Filters Q1) Determine what type of filter is in circuit shown. Calculate the cutoff frequency f c . Q2) Determine what type of filter is in circuit shown. Calculate ...

Nanotechnology engineering - resonance circuits questions

Nanotechnology Engineering - Resonance Circuits Questions - Q1) A series RLC network has R = 2KΩ, L = 40mH and C = 1μF. Calculate the impedance at resonance and at one-fourth, one-half, twice, and four times the resonant ...

Problem 1 a two-phase servomotor has rated voltage applied

Problem 1: A two-phase servomotor has rated voltage applied to its excitation winding. The torque speed characteristic of the motor with Vc = 220 V, 60 Hz applied to its control phase winding is shown in Fig.1. The momen ...

Questions -problem 1 - solve for i0 in fig using mesh

Questions - Problem 1 - Solve for i 0 in Fig. using mesh analysis. Problem 2 - Use mesh analysis to find current i 0 in the circuit. Problem 3 - Use mesh analysis to find v 0 in the circuit. Let v s1 = 120 cos(100t+ 90 o ...

Question 1for the ce amplifier in figure 1 given the

Question 1 For the CE amplifier in Figure (1), given the following component parameters: Parameter Value β DC , β AC 150 V BE 0 . 7 V V CC 12 V R C 820 ? R E 1 100 ? R E 2 220 ? R 1 20 k? R 2 5 . 2 k? R L 100 k? C 1 , C ...

Question 1 - for the transistor in the circuit shown in

Question 1 - For the transistor in the circuit shown in Figure, assume β = 120. Design the circuit such that I CQ = 0.15 mA and R TH = 200kΩ. What is the value of V CEQ ? Question 2 - (a) For the circuit shown in figure, ...

A four-pole star-connected squirrel-cage induction motor

A four-pole, star-connected, squirrel-cage induction motor operates from a variable voltage 50 Hz three-phase supply. The following results were obtained as the supply voltage was gradually reduced with the motor running ...

Assignment - power distribution system transformerscomplete

Assignment - Power Distribution System Transformers Complete your calculations, drawings, and answers, neatly handwritten on these sheets and hand in at the start of lecture in week 6. Absolutely no late submissions will ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As