Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask MATLAB Expert

1235_Determine the dynamics of the double pendulum.png

This project involes determining the dynamics of the double pendulum with a sliding base (see figure above). Each link is assumed to be of square cross section.

The objective is to determine the angles θ1 and θ2 over the time period of t = 0 s to t = 4 s. Let the base motion be prescribed as x(t)= 1/8 sin(4.2t). Based on the Newton's second law, the equations of motion (for the angular acceleration of each link) are given by

1992_Determine the dynamics of the double pendulum1.png

where m and l are the mass and length of the links and Ic = ml2/12 is the moment of inertia of each link. Important note: the 'dot' notation over the symbol means the corresponding derivative with respect to time.

The values of various parameters to be used in the calculations are:

g = 9.81 m/s2; I = 0.50 m; p = 6500 kg/m3 (link density); b = .05 m (dimension of square link cross-section); m =1*(b*b)op kg; lc = m*I*1/12.0 m3.

The above is a system of two 2nd order ordinary differential equations (ODEs). In order to be able to solve this, first transform them into an equivalent four 1st order ODEs. This can be accomplished as follows: Inverting or solving the system of equations above (using the backslash operator or other techniques in MATLAB) and using the fact that dθ1/ dt = .θ1 d.θ1/dt = ..θ1 (and similarly for θ2 ) will provide the values needed to complete the right hand side of the following representation of the system of four 1st order ODEs

110_Determine the dynamics of the double pendulum3.png

Write a MATLAB program that solves for y' over the interval t = 0 s to t = 4 s using three different methods: the Euler method, the mid-point method (2nd Order Runge­Kutta), and the classical 4th Order Runge-Kutta method.

To evaluate the effect of your step size (h) on the results for each of the three methods, use the following six values of h (units of seconds): 0.02, 0.01, 0.005, 0.0025, 0.00125, and 0.000625. For step sizes 0.01s and smaller, calculate the approximate percent relative error in θ1 at t = 4 s between the current step size and the next largest step size.

For example, for a step size of 0.01, the approximate percent relative error is:

1666_Determine the dynamics of the double pendulum4.png

MATLAB, Engineering

  • Category:- MATLAB
  • Reference No.:- M9741450

Have any Question?


Related Questions in MATLAB

Assignment details -need to write a code for connecting

Assignment Details - Need to write a code for connecting segments (Lines) a special case of TSP. The problem is to connect lines in 2d/ 3d space with path obstructions. Can you help me write the code for this? Hope you m ...

Assignment matlab programmingusing appropriate matlab

Assignment: MatLab Programming Using appropriate MatLab syntax, write the code required to analyse and display the data as per the problem description. The order of the MatLab Program should be as follows: Variables and ...

Question 1 manipulate spectral imagehyperspectral images

Question 1. Manipulate spectral image Hyperspectral images can be seen as a generalisation of normal colour images such as RGB images. In a normal RGB colour image, there are 3 channels, i.e. channels for red colour, gre ...

Prepare a 3 - 10 pages long reportprepare a presentation

Prepare a 3 - 10 pages long report Prepare a presentation with 5 - 9 slides. The slides will include introduction (need and similar work), theoretical background (tested neural networks), Data, Results (Comparison of the ...

Assignment - matlab programmingusing appropriate matlab

Assignment - MatLab Programming Using appropriate MatLab syntax, write the code required to analyse and display the data as per the problem description. The order of the MatLab Program should be as follows: Variables and ...

Question - verify the attached paper with matlab and get

Question - Verify the attached paper with matlab and get all the results in the paper and explain step by step the matlab code. Paper - Improving Massive MIMO Belief Propagation Detector with Deep Neural Network. Attachm ...

Discrete optimisation- solve the following two problems

Discrete Optimisation - Solve the following two problems with both exhaustive enumeration and branch and bound - Problem 1 is a mixed integer linear optimisation problem (the problem has both discrete and continuous vari ...

What comparison of means test was used to answer the

What comparison of means test was used to answer the question

Assignment -data is given on which want to do computational

Assignment - Data is given on which want to do computational production planning using Metaheuristic MATLAB Programming: 1) Ant Colony Algorithm on both Partial and Total Flexible Problem. 2) Bee Algorithm on both Partia ...

Lab assignment - matlab matrix relationallogical operators

Lab Assignment - MATLAB Matrix, Relational/Logical Operators and Plotting This laboratory exercise/assignment will involve you 1) practicing multiplication operators in MATLAB; 2) practicing relational and logical operat ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As