Ask MATLAB Expert

The purpose of this lab is to enhance the ECE311 student's understanding of filter behavior and filter design and to provide the student the opportunity to demonstrate skills in linear system analysis and design that may not be apparent from their exams.

In Lab 4 you learned about Butterworth and Chebychev I and II filters, used as low pass filters. In this lab you will learn more about these filters as well as Elliptic filters, used as bandpass filters rather than low pass filters. You will not be given explicit, step-by-step instructions. Rather, these instructions are broadly stated, and it is your responsibility to create the specific steps to achieve the objectives of the lab.

1. Understanding Elliptic filters: Elliptic filters are a class of filters that are well understood and well documented, even though their treatment in our textbook is extremely brief. Using whatever resources you choose, describe:

a) The filter characteristic which these filters optimize (do a better job than any other filter) and

b) The equations describing n-th order elliptic filters.

Use the MATLAB 'help' command to investigate the built-in elliptic function. Then build some filters and display the results using 'plotLTP.m'. Include a sample of these results in your lab report.

2. While low pass filters are easy to create using MATLAB and are well described in references, bandpass filters are frequently used, especially in modern communication systems. Transformation of low pass filters to bandpass filters is straightforward, and is described in your textbook as well as many other references. Understand this transformation by reading whatever references you may need to help you understand how a lowpass filter design can become a band pass filter.

State the transformation equation for lowpass to band pass filter. Can this transformation also move the cutoff frequencies to those used in real problems?

That is, can you move a 1 rad/sec cutoff frequency to 100 MHz?

3. Next you are to design four bandpass filters (Butterworth, Chebychev I, Chebychev II, and Elliptic) with the following characteristics:

a) Lower cutoff frequency, fL, = 99.995 MHz

b) Upper cutoff frequency, fH, = 100.005 MHz

c) For each type, design filters of order 3, 9, and 15.

d) Extra credit: At higher orders, numerical errors limit the uselfuleness of filter design. Determine the highest order (approximately) for which you can get the best Elliptic filter. Include this in your Elliptic plot below.

For each of the 4 filter type, plot the magnitude response, overlaid if possible, with a useable frequency scale, full page, for each order. That is 3 or 4 pages, one plot (and one order) per page, with 4 overlaid filter responses on each plot.

Now for each filter type create a one page plot overlaying the magnitude response of that filter for each of the 3 or 4 orders you have created, to show the difference filter order makes. This will be a total of 4 pages: one per filter type.

In your report discuss the advantages of each of the filter types and the various filter orders you have created.

4. Finally, experimenting with filter types and orders above, create a very narrow band filter with the following frequency characteristics:

a) Lower cutoff frequency, fL, = 99.9995 MHz

b) Upper cutoff frequency, fH, = 100.0005 MHz

What is the bandwidth of this filter (in Hz)? In your report discuss any difficulties in creating a filter with this specifications and what filter types/orders would be appropriate for this filter.

5. Lab report: You are expected to create a high quality printed lab report showing the designs you analyzed, results you obtained, and any interesting observations about filter types and orders. Since you need to do some research about Elliptic filters and bandpass frequency transformations, please include a bibliography showing where you actually obtained this information. In a section at the very end of this report, please create a separate paragraph critiquing this lab. That is, what you liked about it, what extraordinary problems you had with it, and how you would change it to make it a more useful learning experience that could be added to the other ECE311 labs.

 

MATLAB, Engineering

  • Category:- MATLAB
  • Reference No.:- M9523629

Have any Question?


Related Questions in MATLAB

Assignment - matlab programmingusing appropriate matlab

Assignment - MatLab Programming Using appropriate MatLab syntax, write the code required to analyse and display the data as per the problem description. The order of the MatLab Program should be as follows: Variables and ...

Assignment details -need to write a code for connecting

Assignment Details - Need to write a code for connecting segments (Lines) a special case of TSP. The problem is to connect lines in 2d/ 3d space with path obstructions. Can you help me write the code for this? Hope you m ...

Assignment -we have daily gridded rainfall data of 40 years

Assignment - We have daily gridded rainfall data of 40 years and structure of the dataset is like below; Lat = [6.5:0.25:38.5]; Lon = [66.5:0.25:100]; Rainfall (135x129x365x40) (Lon, Lat, days, years). Now, we looking fo ...

Question a safe prime is a prime number that can be written

Question : A safe prime is a prime number that can be written in the form 2p + 1 where p is also a prime number. Write a MATLAB script file that finds and displays all safe primes between 1 and 1000.

Question - verify the attached paper with matlab and get

Question - Verify the attached paper with matlab and get all the results in the paper and explain step by step the matlab code. Paper - Improving Massive MIMO Belief Propagation Detector with Deep Neural Network. Attachm ...

Assignment -data is given on which want to do computational

Assignment - Data is given on which want to do computational production planning using Metaheuristic MATLAB Programming: 1) Ant Colony Algorithm on both Partial and Total Flexible Problem. 2) Bee Algorithm on both Partia ...

What comparison of means test was used to answer the

What comparison of means test was used to answer the question

Question 1 manipulate spectral imagehyperspectral images

Question 1. Manipulate spectral image Hyperspectral images can be seen as a generalisation of normal colour images such as RGB images. In a normal RGB colour image, there are 3 channels, i.e. channels for red colour, gre ...

Assignment -matlab codes and simulated model in

Assignment - Matlab codes and simulated model in simulink/matlab and truetime. 1. Matlab codes and simulink model for pid controller optimization using particle swarm optimization (PSO) my plant is integer order 1000/(s^ ...

Assignment matlab programmingusing appropriate matlab

Assignment: MatLab Programming Using appropriate MatLab syntax, write the code required to analyse and display the data as per the problem description. The order of the MatLab Program should be as follows: Variables and ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As