Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Math Expert


Home >> Math

Solve the subsequent differential equation.

2xy - 9 x2 + (2y + x2 + 1) dy/dt = 0

Solution

Let's start off via supposing that wherever out there in the world is a function Ψ(x,y) which we can get. For this illustration the function that we require

Ψ(x,y) = y2 + (x2 + 1) y - 3x3

Do not worry at this point about where this function came from and how we found it.  Finding the function, ?(x,y), that is needed for any particular differential equation is where the vast majority of the work for these problems lies.  As stated earlier, however, the point of this example is to demonstrate you why the solution process works rather than demonstrating you the actual solution process.

We will notice how to find this function in the subsequent example, thus at this point do not worry regarding how to find it, eailsy accept that this can be got and that we've done as for this exact differential equation.

Here, take some partial derivatives of the function.

Ψx = 2xy - 9x2

Ψx = 2y + x2 + 1

Here, compare these partial derivatives to the differential equation and you'll observe that along with these we can here write the differential equation like:

Ψx + Ψx dy/dt = 0    ......................(1)

Currently, recall from your multi-variable calculus class that (1) is nothing more than the subsequent derivative which you'll require the multi-variable chain rule for this.

d/dx(Ψ(x,y(x)))

Thus, the differential equation can now be written like:

d/dx(Ψ(x,y(x))) = 0

There, if the ordinary but not partial derivative of something is zero, as something should have been a constant to start along with. Conversely, we've got to contain Ψ(x,y) = c.  Or,

y2 + (x2 + 1) y - 3x3 = c

This afterward is an implicit solution for our differential equation! If we had a first condition we could solve for c. We could also get an explicit solution if we needed.

Okay, therefore what did we learn from the last illustration? Let's consider things a little more commonly. Assume that we have the subsequent differential equation.

M(x,y) + N (x,y) dy/dx = 0   .......................(2)

Remember that it's significant that it be in this form! There should be an "= 0" on individual side and the sign separating the two terms should be a "+".  There, if there is a function somewhere out there in the world, Ψ (x,y), hence,

Ψx = M(x,y) and

Ψx = N (x,y)

After that we call the differential equation accurate. In such cases we can write the differential equation like:

Ψx + Ψx dy/dt = 0    ......................(3)

After that using the chain rule from Calculus III we can further decrease the differential equation to the subsequent derivative,

d/dx(Ψ(x,y(x))) = 0

The implicit solution to an accurate differential equation is after that:

Ψ(x,y) = c   ......................(4)

Well, it's the solution given we can get Ψ (x,y) anyway. Thus, once we have the function we can all the time just jump straight to (4) to find an implicit solution to our differential equation.

Finding the function Ψ (x,y) is obviously the central task in finding if a differential equation is accurate and in finding its solution. When we will notice, finding Ψ (x,y) can be a somewhat lengthy process wherein there is the chance of mistakes. Thus, it would be nice whether there was some easy test that we could use before even starting to notice if a differential equation is exact or not. It will be especially helpful if it turns out that the differential equation is not exact, as in this case Ψ (x,y) will not exist. This would be a waste of time to try and get a nonexistent function!

Therefore, let's see if we can get a test for exact differential equations. Let's begin with (2) and suppose that the differential equation is in fact exact. As it's accurate we know that somewhere out there is a function Ψ (x,y) which satisfies,

Ψx = M

Ψy = N

Currently, provided Ψ(x,y) is continuous and its first order derivatives are as well continuous we identify that

Ψx,y = Ψy,x

Though, we also have the subsequent.

Ψx,y = (Ψx)y = (M)y = My

Ψy,x = (Ψ) x  = (N)x = Nx

Thus, if a differential equation is exact and Ψ (x,y) meets all of its continuity conditions we should have as:

My  = Nx  .......................(5)

Similarly if (5) is not true there is no way for the differential equation to be exact.

Thus, we will use equation (5) as a test for exact differential equations. Whether (5) is true we will suppose that the differential equation is exact and that Ψ(x,y) meets all of its continuity conditions and proceed along with determining it. Remember that for all the illustrations here the continuity conditions will be met and thus this won't be an issue.

Math, Academics

  • Category:- Math
  • Reference No.:- M9619158

Have any Question?


Related Questions in Math

1 suppose that n 10088821 is a product of two distinct

1. Suppose that n = 10088821 is a product of two distinct primes, and Φ(n) = 10082272. Determine the prime factors of n. 2. It is easy to show that the converse of Fermat's Theorem does not hold; i.e., the congruence a n ...

Question 1 what is the nth order approximation using taylor

Question: 1. What is the nth order approximation using Taylor series? 2. What is Error Propagation? 3. Please explain what the total numerical error is? Please illustrate how the change of step size will affect the total ...

Question 1 - for the ivp of ode y t-1e-y y1 0 find an

Question 1 - For the I.V.P of ODE y' = (t-1)e -y , y(1) = 0, find an approximation to y(1.2) using the following numerical methods with Δt = 0.1. Compare the numerical solution with the exact solution and compute the err ...

Questions - provide solution to the following questionsq1

Questions - Provide solution to the following questions: Q1. Evaluate the following: ∫xsin3xdx Q2. If , then for what value of α is A an identity matrix? Q3. The line y = mx + 1 is a tangent to the curve y 2 = 4x. Find t ...

Mathematics- algebraic geometry problemlet k denotes an

Mathematics- Algebraic Geometry Problem Let K denotes an algebraically closed field and let P 1 be constructed as in Example 5.5(a) in Gathmanns notes, i.e. P 1 is the gluing of X 1 = A 1 and X 2 = A 1 along  the open su ...

Clarity succinctness writing your name and netid1

Clarity, succinctness, writing your name and Netid: 1 Indistinguishability 1. If {X n }n is computationally indistinguishable from {Y n } n , {Y n } n is computationally indistin- guishable from {Z n } n, then (select th ...

Questions -q1 prove the following identitiesa sinx y sinx

Questions - Q1. Prove the following identities a. sin(x + y) + sin(x - y) = 2 sin x cos y b. sec(x - y) = cos(x + y)/(cos 2 x - sin 2 y) c. tan 2 x - sin 2 x = (tan x sin x) 2 Q2. Solve the following equations for x ∈ [0 ...

Maths assignment - 1 analysis of a data setusing a

Maths Assignment - 1. Analysis of a data set Using a continuous data set you are requested to collect in the types of data and gathering data section, perform a statistical analysis on your data. You have opportunities t ...

Question you will recommend a course of action regarding

Question: You will recommend a course of action regarding strategic planning in light of the issue the healthcare organization is facing. Be sure to address the following: 1. Provide a brief summary of the issue facing t ...

Instructionsthe aim of the assignment is that the

Instructions The aim of the assignment is that the student/group studies and applies numerical methods such as Euler's method, the Improved Euler's method and the Runge-Kutta method to solve first-order differential equa ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As