Ask Question, Ask an Expert

+1-415-315-9853

info@mywordsolution.com

Ask Math Expert


Home >> Math

problem 1

This problem tests your ability to describe symmetries geometrically and to represent them as permutations in cycle form. It also tests your understanding of conjugacy classes and their relationship to normal subgroups.
The figure below shows a prism with three congruent square faces and an equilateral triangle at the base and the top. The locations of the vertices of the prism have been numbered so that we may represent the elements of the group G of all symmetries of the prism as permutations of the set {1, 2, 3, 4, 5, 6}.

2241_Prism.jpg

(a) Describe geometrically the symmetries of the prism represented in cycle form by (1 6)(2 5)(3 4) and (2 3)(5 6).
(b) prepare down all the symmetries of the prism in cycle form as permutations of {1, 2, 3, 4, 5, 6}, and describe each symmetry geometrically.
(c) prepare down the conjugacy classes of G.
(d) Determine a subgroup of G of order 2, a subgroup of order 4, and a subgroup of order 6. In each case, state whether or not your choice of subgroup is normal, justifying your answer.

problem 2

This problem tests your understanding of matrix groups and conjugate subgroups.

This problem concerns the group of matrices

2467_Matrix_1.jpg

under matrix multiplication, and its subgroups

1795_Matrix_2.jpg

and

1297_Matrix_3.jpg

(You are NOT asked to prove that any of G, H and K are groups.)
(a) Use the strategies in Frame 10 of Section 5.2 of Unit GTB1 to show that one of H and K is a normal subgroup of G, but the other is not.
(b) For the subgroup which is not normal, determine two other subgroups of G to which it is conjugate.

problem 3

This problem tests your understanding of homomorphisms, kernels, images and quotient groups. In this problem C∗ is the group of non-zero complex numbers under multiplication, and C is the group of all complex numbers under addition.

(a) Determine whether or not each of the following functions is a homomorphism.

(i) φ1 : C → C
      z → z + 3i
(ii) φ2 : C → C
      z → z + 3iz
(iii) φ3 : C∗ → C∗
      z → 2z2
(iv) φ4 : C∗ −→ C∗
      z →z/z

(b) For each homomorphism φ in part (a), determine Ker(φ) and Im(φ), and identify the quotient group G/ Ker(φ) up to isomorphism, where G is the group that is the domain of the homomorphism. (That is, specify a group from the module that is isomorphic to G/ Ker(φ).)

problem 4

This problem tests your understanding of group actions, orbits and stabilisers.
This problem concerns the subgroup

582_Matrix_4.jpg
of the group M of 2 × 2 invertible matrices under matrix multiplication.
(You are NOT asked to prove that G is a subgroup of M.)
(a) Show that the following equation defines a group action of G on the plane R2:

663_Matrix_5.jpg∧ (x, y) = ((1 + t)x + ty, −tx + (1 − t)y).
The remainder of this problem concerns the group action given in part (a).

(b) Determine the orbits of:

(i) (1, 0),
(ii) (1, 1),
(iii) (1,−1).

(c) Give a geometric description of ALL the orbits of the action.

(d) Determine the stabilisers of:

(i) (1, 1),
(ii) (1,−1).

problem 5

This problem tests your understanding of the Counting Theorem. A large square is to be made from eight congruent triangular tiles, fitted together as shown in the diagram below. Each triangular tile can be black or white.

757_Triangular tile.jpg

Use the Counting Theorem to determine how many different such squares can be made, if two squares are regarded as the same when a rotation or reflection takes one to the other.

problem 1

This problem tests your understanding of limits, the ε–δ definition of continuity and uniform continuity, and your ability to give careful proofs and to apply esults involving these concepts.
(a) In this part of the problem you may assume any results that are proved in Unit AB1, but you should refer to any result that you use. Prove each of the following statements.

(i) limx→1 (2x3 − 5x2 + 2x + 1)/(x2 − 4x + 3)= 1
(ii) limx→0 (sin x)/ (esin x − 1)= 1
(iii) limx→∞(4x4 − loge x)/(2ex + 3x2)= 0

(b) Prove that the following function does not tend to a limit as x tends to zero.

f(x) = (3x3 − 4|x|)/ 2x
(c) Use the ε–δ definition of continuity to prove that the function

f(x) = 2x2 − 3x is continuous at 2.
(d) Prove that the function
f(x) =(x − 2)/(x + 1)
is uniformly continuous on the interval [1, 3], stating any results from the module which you use.

problem 2

This problem tests your ability to determine whether a function is differentiable at a given point, and to apply theorems relating to differentiability.
(a)

(i) Prove from the definition of differentiability that the function

f(x) =(x − 2)/(2x + 1)
is differentiable at 2, and find f'(2).
(ii) Sketch the graph of the function
f(x) = (x2 − x, x ≤ 2, 2x − 2, x> 2.)

Determine whether or not the function f is differentiable at 2.

(b) Use the Mean Value Theorem to show that if
f(x) = sinx/x
then there is a point c in (π/4,π/2) such that f'(c) = − 8(√2 − 1)/π2
(c)

(i) Prove the following inequality:
x6/7 ≤ 6/7x + 1/7 , for x ∈ [0, 1].

(ii) State whether the following inequality is true or false, giving a brief reason for your answer:
x7/5 ≤ 5/7x + 1/7 , for x ∈ [0, 1].
(d) Prove that the following limit exists, and evaluate it.
limx→1[1 − sin{(π/2)x}] /( x4 − 2x2 + 1)

problem 3

This problem tests your understanding of the ideas behind Riemann integration, your ability to evaluate integrals using various techniques, and your ability to apply results relating to integration.
(a) Let f be the function

                      { 3, x= −2,
      f(x) =       −x, −2 < x ≤ 0,
                     2x + 1, 0 < x < 2,
                      3, x= 2.}

Sketch the graph of f, and evaluate L(f, P) and U(f, P) for each of the following partitions P of [−2, 2].

(i) P = {[−2, 0], [0, 2]}
(ii) P = {[−2,−3/2 ], [−3/2 , 0], [0, 1], [1, 2]}
(b) Let

1891_Equations_3.jpg

(i) Evaluate I0.
(ii) Show that a reduction formula for In is
In = 1/3e3 − 13nIn−1, for n ≥ 1.
(iii) Deduce the values of I1 and I2.
(c)

(i) Show that

900_Equations_3.jpg
(ii) Hence determine whether the series

1369_Equations_4.jpg

convergence or divergence

(d) Use Stirling’s Formula to determine a number λ such that
(6n)!/((2n)!)3 ∼ λ(36n/n)as n→∞.

problem 4

This problem tests your ability to determine a Taylor polynomial and a remainder estimate, to determine the interval of convergence for a power series, and to apply the General Binomial Theorem.
(a)

(i) find out the Taylor polynomial T2(x) at −1 for the function

f(x) =(1/1 − 2x)
.
(ii) Show that T2(x) approximates f(x) with an error of less than 1/80 on the interval [−1.5,−1]. [9]
(b) Determine the interval of convergence of the power series

1481_Equations_5.jpg
(c)

(i) Use the General Binomial Theorem to determine the first four terms of the Taylor series at 0 for the function
f(x) = (1 + 5x)−1/5.
State the radius of convergence of this power series.

(ii) Using the Taylor Series in part (c)(i) with a suitable value of x, show that
21/5 = 1+1/((1!) × 10)+(1 × 6)/((2!) × 100)+(1 × 6 × 11)/(3!) × 1000+.....

problem 1

Consider the following sets:
A = {(x, y) ∈ R2 : (x − 2)2 + (y + 1)2 < 9},
B = {(x, y) ∈ R2 : y − 2x < 2}.
Show that A is a proper subset of B.

problem 2

The set {1, 2, 4, 8, 16, 32, 64, 128} forms a group G under multiplication modulo 255. (You are NOT asked to prove this statement.)
(a) Show that G is cyclic.
(b) Find all the subgroups of G.
(c) Find an isomorphism φ that maps (G,×255) to (Z8,+8).

problem 3
The group table for a group G is shown below

2180_Group table.jpg
(a) Show that H = {e, a} is a subgroup of G.
(b) prepare down the distinct left cosets of H in G.
(c) Show that H is a normal subgroup of G.
(d) Construct the group table for the quotient group G/H and prepare
down a group from the module to which G/H is isomorphic.

problem 4

A regular hexagon OPQRST has its vertices at O (the origin) and points P, Q, R, S and T with position vectors p, q, r, s and t, respectively. The point U with position vector u is the midpoint of the line segment OP, and SU meets OR at the point V

421_Hexagon.jpg

(a) Show that the position vector r = 2(p + t) and prepare down the position vectors u and s, in terms of p and t.
(b)
Show that each point on the line SU can be represented by a vector x of the form
x = (1/2 + 1/2λ)p + 2λt, where λ ∈ R.
(c) Find the value of λ, in the above formula, for which x is a multiple of r.
(d) Hence find the position vector v of the point V , and prepare down the ratio UV : V S.

problem 5

Let t be the linear transformation
t : R3 → R3
(x, y, z) → (x + 3y + z,−x + y + z, x+ 5y + 2z).
(a) Find Ker(t) and state its dimension.
(b) Find a basis for Im(t).
(c) Describe Im(t) geometrically and obtain an equation for it.
(d) Determine how many solutions the following system of linear equations has:
                                x + 3y + z = 1,
                               −x + y + z = 1,
                                x + 5y + 2z = 1.

problem 6

Determine whether each of the following sequences {an} is convergent, stating the limit of the sequence if it exists. You should name any result or rule you use.
(a) an = (6n2 − 2n)/(3n2 + 3n − 7), n = 1, 2, . . .
(b) an = (5n2 + (−3)n + n)/(3n − 2 + 2n) , n = 1, 2, . . .
(c) an = (2n8 + n! + 2n)/(3n + 4), n = 1, 2, . . .

problem 7

Let f be the function defined by

f(x) =    {sin x, x < 0,
            2x, 0 ≤ x < 1,
            cos(πx), 1 ≤ x.}

(a) Sketch the graph of f.
(b) Prove that f is continuous at 0.
(c) Prove that f is discontinuous at 1.

problem 8

This problem concerns the symmetry group G of the regular hexagon, shown below.

2475_Hexagon_1.jpg

Let g ∈ G be the anticlockwise rotation of the hexagon through an angle of 2π/3 about its centre, and let h ∈ G be the reflection of the hexagon in the line through the midpoints of sides 12 and 4 5.
(a) prepare g, g2 and h in cycle form, using the numbering of the locations of the vertices as shown above.
(b) Express the conjugate ghg−1 of h by g in cycle form, and describe ghg−1 geometrically.
(c) Are the symmetries (1 6)(2 5)(3 4) and (1 4)(2 5)(3 6) conjugate in G? Justify your answer.
(d) Are the symmetries (1 6)(2 5)(3 4) and (1 4)(2 5)(3 6) conjugate in S6? Justify your answer.
(e) prepare down the conjugacy class of G that contains (2 6)(3 5).

problem 9

Let G be the group of matrices

2404_Matrix_6.jpg
under matrix multiplication, and let f : G → G be the function defined by

2240_Matrix_7.jpg
(a) Show that f is a group homomorphism.
(b) Determine the kernel of f.
(c) Find a group of matrices that is isomorphic to the quotient group G/ Ker(f).

problem 10
Show that the following limit exists and determine its value.
limx→1 (x + cos(πx))/(3x5 − 5x3 + 2x)

problem 11

Prove that

1684_Equations_10jpg.jpg

problem 12

Determine the interval of convergence of the power series

202_Equations_10 jpg.jpg

Math, Academics

  • Category:- Math
  • Reference No.:- M9536
  • Price:- $65

Guranteed 36 Hours Delivery, In Price:- $65

Have any Question? 


Related Questions in Math

The demand function for a certain brand of cd is given by p

The demand function for a certain brand of CD is given by p = -0.01x2- 0.3x + 49 where p is the wholesale unit price in dollars and x is the quantity demanded each week, measured in units of a thousand. Determine the con ...

Solve the equation sin2 radic2 cosx 0 finding all

Solve the equation sin(2) + √2 cos(x) = 0 , finding all solutions in the interval [0, 2π). Start by applying an appropriate trig identity. (You should be able to provide the exact values of the solutions and state them i ...

Business ethics final paperthe final paper for admn2406

Business Ethics: Final Paper The final paper for ADMN2406 will be worth 40% of your overall grade.  It will be due on April 19, 2013.  It is recommended that you submit your paper online via email, although you may submi ...

Thread viewchoose one country that you might like to visit

Thread View Choose one country that you might like to visit. Select a duration for your trip between two and six weeks, and then choose a number of participants between 5 and 10 people. Suppose one goal of your group is ...

In the exercise prove the given theoremtheorem a set e sube

In the exercise prove the given theorem: Theorem A set E ⊆ R 2  is the set of Nash equilibrium payoffs in a two-player game in strategic form if and only if E is the union of a finite number of rectangles of the form [a, ...

Innbsp300 words answer the following discussion post

In 300 words, answer the following discussion post question: The Green Organization is a conglomerate of many smaller business units. The organization has offices globally. Some offices are contracted independent agents ...

Find values of the trigonometric functions of the angle in

Find values of the trigonometric functions of the angle (in standard position) whose terminal side passes through the given point. (0.15,0.08) (Type an exact answer in simplified form.)

Suppose the set f of functions for a framework are all of

Suppose the set F of functions for a framework are all of gen-kill form. That is, the domain V is the power set of some set, and f (x) = G [ (x K) for some sets G and K. Prove that if the meet operator is either (a) unio ...

1 what two concepts do you think are the most relevant to

1. What two concepts do you think are the most relevant to the field of logistics and why? 2. Which one or two concepts do you think are the least relevant to the field of logistics and why? 3. Which concepts did you fin ...

How does the primary function of upward-flowing

How does the primary function of upward-flowing communication differ from that of downward-flowing communication? Essay of 350-500 words. (introduction, body and conclusion)

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

WalMart Identification of theory and critical discussion

Drawing on the prescribed text and/or relevant academic literature, produce a paper which discusses the nature of group

Section onea in an atwood machine suppose two objects of

SECTION ONE (a) In an Atwood Machine, suppose two objects of unequal mass are hung vertically over a frictionless

Part 1you work in hr for a company that operates a factory

Part 1: You work in HR for a company that operates a factory manufacturing fiberglass. There are several hundred empl

Details on advanced accounting paperthis paper is intended

DETAILS ON ADVANCED ACCOUNTING PAPER This paper is intended for students to apply the theoretical knowledge around ac

Create a provider database and related reports and queries

Create a provider database and related reports and queries to capture contact information for potential PC component pro