Ask Math Expert


Home >> Math

Sample final questions-

1. Consider the power series

n=1xn/n3,          n=1x3n/2n,           n=0x2n!.

For each power series, determine its radius of convergence R. By considering the series at x = ±R, determine the exact interval of convergence.

2. (a) Prove by using the definition of convergence only, without using limit theorems, that if (sn) is a sequence converging to s, then limn→∞ sn2 = s2.

(b) Prove by using the definition of continuity, or by using the ε-δ property, that f(x) = x2 is a continuous function on R.

3. Let f be a twice differentiable function defined on the closed interval [0, 1]. Suppose r, s, t ∈ [0, 1] are defined so that r < s < t and f(r) = f(s) = f(t) = 0. Prove that there exists an x ∈ (0, 1) such that f''(x) = 0.

4. (a) Suppose that n=0an is a convergent series. Define a sequence (bn) according to bn = a2n + a2n+1 for n ∈ N ∪ {0}. Prove that n=0bn converges.

(b) Construct an example of a series n=0an that diverges, but that if (bn) is defined as above, then n=0 bn converges.

5. Suppose f a is real-valued continuous function on R and that f(a)f(b) < 0 for some a, b ∈ R where a < b. Prove that there exists an x ∈ (a, b) such that f(x) = 0.

6. Let f be a real-valued function defined on an interval [0, b] as

196_Figure.png

Consider a partition P = {0 = t0 < t1 < . . . < tn = b}. What are the upper and lower Darboux sums U(f, P) and L(f, P)? Is f integrable on [0, b]?

7. Let f be a decreasing function defined on [1, ∞), where f(x) ≥ 0 for all x ∈ [1, ∞). Prove that 1f(x)dx converges if and only if n=1f(n) converges.

8. Consider the function defined for x, y ∈ R as

1767_Figure1.png

(a) Prove that d defines a metric on R.

(b) What is the neighborhood of radius 1/2 centered on 0?

(c) Consider an arbitrary set S ⊆ R. Is S open? Is S compact?

9. Let x = (x1, x2) and y = (y1, y2) be in R2. Consider the function

d(x, y) = |x1 - y1| + |x2 - y2|.

(a) Prove that d is a metric on R2.

(b) Compute and sketch the neighborhood of radius 1 at (0, 0).

10. Consider a function f defined on R which satisfies

|f(x) - f(y)| ≤ (x - y)2

for all x, y ∈ R. Prove that f is a constant function.

11. Suppose that f is differentiable on R, and that 2 ≤ f'(x) ≤ 3 for x ∈ R. If f(0) = 0, prove that 2x ≤ f(x) ≤ 3x for all x ≥ 0.

12. Show that if f is integrable on [a, b], then f is integrable on every interval [c, d] ⊆ [a, b].

13. (a) Suppose r is irrational. Prove that r1/3 and r + 1 are irrational also.

(b) Prove that (5 + √2)1/3 + 1 is irrational.

14. By using L'Hopital's rule, or otherwise, evaluate

limx→0(x/1 - e-x^2-3x),   limx→0(1/sin x - 1/x),       limx→0(x3/sin x - x).

15. Let a ∈ R. Consider the sequence (sn) defined as

2036_Figure2.png

Compute lim sup sn and lim infsn. For what value of a does (sn) converge?

16. Consider the function f: R2 → R defined as

f(x1, x2) = 1/x12 + x22 + 1.

With respect to the usual Euclidean metrics on R and R2, prove that f is continuous at (0, 0) and at (0, 1).

17. (a) Calculate the improper integral

01x-p dx

for the cases when 0 < p < 1 and p > 1.

(b) Prove that

0x-p dx = ∞

for all p ∈ (0, ∞).

18. Prove that if f is integrable on [a, b], then

limd→b^- ad f(x) dx = abf(x) dx.

19. Let f(x) = x2, and define a sequence (sn) according to s1 = λ and sn+1 = f(sn) for n ∈ N. Prove that (sn) converges for λ ∈ [-1, 1], and diverges for |λ| > 1.

20. Consider the three sets

A = [0, √2] ∩ Q,                                 B = {x2 + x - 1: x ∈ R},                      C = {x ∈ R: x2 + x - 1 < 0}.

For each set, determine its maximum and minimum if they exist. For each set, determine its supremum and infimum. Detailed proofs are not required, but you should justify your answers.

21. Let fn(x) = x - xn on [0, 1] for n ∈ N.

(a) Prove that fn converges pointwise to a limit f, and determine f.

(b) Prove that fn does not converge uniformly to f.

(c) Find an interval I contained in [0, 1] on which fn → f uniformly.

(d) Prove that the fn are integrable, that f is integrable, and that 01fn 01f.

22. Define

1611_Figure3.png

for x ∈ R.

(a) Calculate F(x) = 0xf(t)dt for x ∈ R.

(b) Sketch f and F.

(c) Compute F' and state the precise range over which F' exists. You may make use of the second Fundamental Theorem of Calculus.

23. (a) Let f and g be continuous functions on [a, b] such that ab f = abg. Prove that there exists an x ∈ [a, b] such that f(x) = g(x).

(b) Construct an example of integrable functions f and g on [a, b] where ab f = ab g but that f(x) ≠ g(x) for all x ∈ [a, b].

24. Define the sequence of functions hn on R according to

741_Figure4.png

(a) Sketch h1, h2, and h3.

(b) Prove that hn converges pointwise to 0 on R/{0}. Prove that limn→∞ hn(0) = ∞.

(c) Let f be a continuous real-valued function on R. Prove that limn→∞-∞hn f = f(0).

(d) Construct an example of an integrable function g on R where limn→∞ -∞hng, exists and is a real number, but does not equal g(0).

25. Consider the function

f(x) = x/1 + x.

on the interval [0, ∞).

(a) Show that limx→∞ f(x) = 1, and that 0 ≤ f(x) < 1 for all x ∈ [0, ∞).

(b) Sketch f.

(c) Calculate f', f'', and use them to construct the partial Taylor series at x = 1 with the form

fT(x) = n=02((x - 1)nf(n)(1)/n!).

(d) Show that fT can be written as a quadratic equation with the form ax2 + bx + c, and compute a, b, and c.

(e) Add a sketch of fT to the sketch of f. [Note: fT(1) = f(1) so the two curves should intersect at x = 1.]

Math, Academics

  • Category:- Math
  • Reference No.:- M91819954

Have any Question?


Related Questions in Math

Questions -q1 prove the following identitiesa sinx y sinx

Questions - Q1. Prove the following identities a. sin(x + y) + sin(x - y) = 2 sin x cos y b. sec(x - y) = cos(x + y)/(cos 2 x - sin 2 y) c. tan 2 x - sin 2 x = (tan x sin x) 2 Q2. Solve the following equations for x ∈ [0 ...

Maths assignment - 1 analysis of a data setusing a

Maths Assignment - 1. Analysis of a data set Using a continuous data set you are requested to collect in the types of data and gathering data section, perform a statistical analysis on your data. You have opportunities t ...

Questions - provide solution to the following questionsq1

Questions - Provide solution to the following questions: Q1. Evaluate the following: ∫xsin3xdx Q2. If , then for what value of α is A an identity matrix? Q3. The line y = mx + 1 is a tangent to the curve y 2 = 4x. Find t ...

Assessment taskpractical investigation- question 1 requires

Assessment Task Practical Investigation - Question 1 requires selecting reference points from the graph. It is expected that each student will choose different reference points to other students. Take note of the criteri ...

1 suppose that n 10088821 is a product of two distinct

1. Suppose that n = 10088821 is a product of two distinct primes, and Φ(n) = 10082272. Determine the prime factors of n. 2. It is easy to show that the converse of Fermat's Theorem does not hold; i.e., the congruence a n ...

Assignment -question 1 let t and or 0 1 be a boolean

Assignment - Question 1. Let (T, ∧, ∨,', 0, 1) be a Boolean Algebra. Define ∗ : T × T → T and o : T × T → T as follows: x ∗ y := (x ∨ y)' x o y := (x ∧ y)' (a) Show, using the laws of Boolean Algebra, how to define x ∗ y ...

Assignment - provide solution to the following questionsq1

Assignment - Provide solution to the following questions: Q1. Evaluate the following: ∫xsin3x dx Q2. If , then for what value of α is A an identity matrix? Q3. The line y = mx + 1 is a tangent to the curve y 2 = 4x. Find ...

Question 1 what is the nth order approximation using taylor

Question: 1. What is the nth order approximation using Taylor series? 2. What is Error Propagation? 3. Please explain what the total numerical error is? Please illustrate how the change of step size will affect the total ...

Mathematics- algebraic geometry problemlet k denotes an

Mathematics- Algebraic Geometry Problem Let K denotes an algebraically closed field and let P 1 be constructed as in Example 5.5(a) in Gathmanns notes, i.e. P 1 is the gluing of X 1 = A 1 and X 2 = A 1 along  the open su ...

Mathematics- algebraic geometry problemlet k denotes an

Mathematics- Algebraic Geometry Problem Let K denotes an algebraically closed field and let P 1 be constructed as in Example 5.5(a) in Gathmanns notes, i.e. P 1 is the gluing of X 1 = A 1 and X 2 = A 1 along  the open su ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As