Ask Physics Expert

QUESTION 1: Band Structure

Carriers in a two-dimensional (2D) sample occupy a conduction band with the approximate energy-wavevector relation

165_Band Structure.png

where a = 2nm is the spacing of the 2D square-lattice "crystal" in real space, and U = 150meV is the maximum spread of the band.

(a) Choose ky = 0 and roughly sketch E(k) as a function of wavenumber k along the kx-direction. Show the boundary points of the Brillouin zone(BZ).

The complete BZ in 2D is a square centred on k = 0. Draw another sketch, this time of the contour in the 2D zone for which E(k) = U/2. What is the magnitude of k on this contour?

(b) Using Eq. (1), show that the group velocity in the band (still along the x-axis), de?ned as

2162_Band Structure1.png

can be written as

193_Band Structure2.png

(c) What is the limit of vx(k) when k = kx = π/a? What is the limit when kx → 0 from the negative side?

(d) The effective mass depends only on k since the band is circularly symmetric, and is given simply by

895_Band Structure3.png

Find the expression for the ratio m∗ (k)/me if Eq. (1) holds. How does this ratio behave at the centre of the BZ? Give its value at k = π/a. Explain how the sign of m∗ relates to the band shape there.

QUESTION 2: Band Occupancy

The density of states (DOS), for a sample of 2D material, counts up how many states become available in the band as we move up along its energy curve E = E(k). Its formula in 2D, including spin degenracy of the band, is

2264_Band Structure4.png

(a) For the same band as in Question 1, sketch D(E) in the range 0 < E < U. What are its units?

(b) When E << U we can approximate the DOS as  1731_Band Structure5.png

Suppose we are at zero temperature and the band continas electrons with Fermi energy EF; their distribution function (the probability to occupy a state at some given energy) is f(E) = Θ(EF - E) - that is, f = 1 below the Fermi level, and is zero otherwise.

Assuming EF << U, how would you use the information for D(E) from Eq. (3) together with the distribution f(E) to calculate the total number of electrons per cm2 of sample?

(c) Now estimate the density for EF = 35meV, using the parameter values a and U given in Q.1. On average, how many electrons occupy a unit cell of size a2 in the real lattice?

(d) It turns out that the integration for carrier density over the full DOS can be done exactly up to E = U. It is given by where sin-1 (x) denotes the sine-inverse function (known in the U.S. as arcsin(x), this ex- pression is NOT the reciprocal 1/ sin(x); it is that value y which satis?es sin(y) = x).

593_Band Structure6.png

What is the number of electrons per unit cell of the real lattice when EF = U and also when EF = U/√2?

Physics, Academics

  • Category:- Physics
  • Reference No.:- M9717447

Have any Question?


Related Questions in Physics

Question oppositely charged parallel plates are separated

Question: Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the ma ...

Question an object of mass m attached to a spring of force

Question: An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement from equilibrium is A and the total mechanical energy of the system is E. What is th ...

Quesion when a nucleus of 235u undergoes fission it breaks

Quesion: When a nucleus of 235U undergoes fission, it breaks into two smaller, more tightly bound fragments. Part A: Calculate the binding energy per nucleon for 235U. Express your answer with the appropriate units. E=__ ...

Question a nylon rope used by mountaineers elongates 130 m

Question: A nylon rope used by mountaineers elongates 1.30 m under the weight of a 65.0-kg climber. If the rope is 45.0 m in length and 7.0 mm in diameter, what is Young's modulus for this material? The response must be ...

Question an object is 30 cm in front of a converging lens

Question: An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. What are the image characteristics: (i) upright or inverted, (ii) magnifica ...

Question an object of mass m is traveling on a horizontal

Question: An object of mass m is traveling on a horizontal surface. There is a coefficient of kinetic friction µ between the object and the surface. The object has speed v when it reaches x=0 and encounters a spring. Th ...

Question in one of the classic nuclear physics experiments

Question: In one of the classic nuclear physics experiments at the beginning of the 20th century, an alpha particle was accelerated towards a gold nucleus and its path was substantially deflected by the Coulomb interacti ...

Question an object of mass m is dropped from height h above

Question: An object of mass m is dropped from height h above a planet of mass M and radius R. Find an expression for the object's speed as it hits the ground. Express your answer in terms of the variables m,M,h,R and app ...

Question one type of bb gun uses a spring-driven plunger to

Question: One type of BB gun uses a spring-driven plunger to blow the BB from its barrel. (a) Calculate the force constant of its plunger's spring if you must compress it 0.130 m to drive the 0.0580-kg plunger to a top s ...

Question an object is placed 30 cm to the left of a

Question: An object is placed 30 cm to the left of a converging lens that has a focal length of 15cm. Describe what the resulting image look like (i.e. image distance, magnification, upright or inverted images, real or v ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As