Ask Physics Expert

Procedure

1. Take a gas piston from the Glassware shelf and place it on the workbench.

2. Take a balance from the Tools shelf and drop it directly onto the gas piston. Record the mass of the empty piston.
Mass of empty piston 111.420 g

3. Select one of the gases from the Chemicals shelf and fill the gas piston with 100 mL of the gas. Record the mass of the piston plus gas.
Chose CH4 Methane new mass is 111.486 g

4. Remove the gas piston from the balance.

5. Open the Data window and click on the gas piston. Click the Pushpin icon on the blue bar of the Data window to lock its display to the gas piston.

6. Take a thermometer and pressure gauge from the Tools shelf and drop them on the gas piston.

7. Take a heating plate from the Tools shelf and drop it on the gas piston.

8. Open the Properties window and click on the heating plate. In the Properties window turn the heating plate on and turn the dial to set the heat to around 200 watts.

9. Watch the temperature of the gas in the piston increase and the gas volume in the piston rise.

10. Once the temperature of the gas has reached nearly 200C, remove the piston from the heating plate.

11. The temperature will begin to fall and the gas volume displayed in the Data window will decrease. Record pairs of temperature and volume data every 10 degrees C or so, until the temperature has returned to room temperature.

Temperatures Gas Volume
190 157.32
180 153.91
170 150.39
160 146.78
150 143.21
140 139.89
130 136.66
120 133.90
110 129.43
100 126.18
90 123.49
80 120.19
70 116.63
60 113.53
50 110.15
40 106.47
30 103.08
21 100.00

NOTE: This is best accomplished by working in pairs, with one person calling out the data values and the other writing them down.

12. Next, take a constant temperature bath from the Tools shelf and place it on the workbench.

13. Using the Properties window, set the bath to dry ice.

14. Drag the bath and drop it onto the gas piston.

15. When the temperature of the gas falls to nearly -70C, Remove the gas piston from the constant temperature bath.

16. Record the temperature and volume of the gas in the piston at every 10C increment or so as it warms back up to room temperature.

Temperature Gas Volume
-70 68.91
-60 72.66
-50 75.85
-40 79.14
-30 82.65
-20 85.83
-10 89.46
0.02 92.85
10 96.25
21 100.00

Assignment

1. Record the formula of the gas you selected to run the experiment.
CH4 Methane

2. What is the constant pressure at which this experiment was run?

3. The molecular weight of the gas is shown in the Data window. Calculate the number of moles of gas from the measured masses of the empty piston and the piston plus gas.

4. Use a spreadsheet to construct a graph of the recorded data with the temperature, in degrees C, on the x-axis and the volume, in mL, on the y-axis.

5. Find the slope and intercept of the straight line fit to the data points. In Excel, the slope is given by the function SLOPE (y values, x values) and the intercept is given by the function INTERCEPT (y values, x values). Record these values.

6. Calculate the value for absolute zero, in degrees Celsius, from the equation developed in the background section of the lab manual:

T0 = -(intercept / slope)

7. The accepted value for absolute zero is -273.15C. Calculate the percent error of your results according to:

%error = |T(experimental) - T(accepted)| / |T(accepted)| * 100

8. In designing the experimental procedure, should you aim to use a large or small initial volume of air? Explain why.

9. In designing the experimental procedure, should you try to control the heating/cooling rate of the apparatus to be slow or fast? Explain why.

10. This experiment extrapolates the behavior of an ideal gas down to coldest possible range. In reality, the gas would condense into a liquid as it approaches absolute zero. Does this affect the conclusion reached regarding the value of absolute zero?

11. Amazingly enough, researchers have recently been able to cool a low-density gas of sodium to nano-Kelvin temperatures, and -273.15C is indeed the limit that is approached. At these low temperatures, the gas is dominated by quantum mechanical effects.

Physics, Academics

  • Category:- Physics
  • Reference No.:- M91639730
  • Price:- $25

Priced at Now at $25, Verified Solution

Have any Question?


Related Questions in Physics

Question oppositely charged parallel plates are separated

Question: Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the ma ...

Question an object of mass m attached to a spring of force

Question: An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement from equilibrium is A and the total mechanical energy of the system is E. What is th ...

Quesion when a nucleus of 235u undergoes fission it breaks

Quesion: When a nucleus of 235U undergoes fission, it breaks into two smaller, more tightly bound fragments. Part A: Calculate the binding energy per nucleon for 235U. Express your answer with the appropriate units. E=__ ...

Question a nylon rope used by mountaineers elongates 130 m

Question: A nylon rope used by mountaineers elongates 1.30 m under the weight of a 65.0-kg climber. If the rope is 45.0 m in length and 7.0 mm in diameter, what is Young's modulus for this material? The response must be ...

Question an object is 30 cm in front of a converging lens

Question: An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. What are the image characteristics: (i) upright or inverted, (ii) magnifica ...

Question an object of mass m is traveling on a horizontal

Question: An object of mass m is traveling on a horizontal surface. There is a coefficient of kinetic friction µ between the object and the surface. The object has speed v when it reaches x=0 and encounters a spring. Th ...

Question in one of the classic nuclear physics experiments

Question: In one of the classic nuclear physics experiments at the beginning of the 20th century, an alpha particle was accelerated towards a gold nucleus and its path was substantially deflected by the Coulomb interacti ...

Question an object of mass m is dropped from height h above

Question: An object of mass m is dropped from height h above a planet of mass M and radius R. Find an expression for the object's speed as it hits the ground. Express your answer in terms of the variables m,M,h,R and app ...

Question one type of bb gun uses a spring-driven plunger to

Question: One type of BB gun uses a spring-driven plunger to blow the BB from its barrel. (a) Calculate the force constant of its plunger's spring if you must compress it 0.130 m to drive the 0.0580-kg plunger to a top s ...

Question an object is placed 30 cm to the left of a

Question: An object is placed 30 cm to the left of a converging lens that has a focal length of 15cm. Describe what the resulting image look like (i.e. image distance, magnification, upright or inverted images, real or v ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As