Ask Physics Expert

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

On the night of a Full Moon, Mary decides to do an experiment with gravity. At midnight, she climbs into her backyard tree house, leans out the window, and holds an acorn as high as she can. She lets go and is disappointed to see the acorn plummet back down to Earth.

1. Why did the acorn fall to Earth instead of rising up to the Moon?

2. Give two reasons why we feel Earth's gravity more strongly than the Moon's gravity.

Text Box: Gizmo Warm-up

578_vector.png

From acorns to apples, gravity causes nearly any object to fall to Earth's surface. Gravity also causes the Moon to orbit Earth and Earth and the other planets to orbit the Sun. The Gravitational Force GizmoTM allows you to explore the factors that influence the strength of gravitational force.

To begin, turn on the Show force vector checkboxes for objects A and B. The arrows coming from each object are vectors that represent gravitational force. The length of each vector is proportional to the force on each object.

1. Move object A around. As object A is moved, what do you notice about the direction of the two force vectors?

2. How do the lengths of the two vectors compare?

3. Drag object A closer to object B. How does this change the gravitational force between the two objects?

Question: How does mass affect the strength of gravitational force?

1. Form hypothesis: How do you think the masses of objects A and B will affect the strength of the gravitational force between them?

2. Predict: How do you think the gravitational force between two objects will change if the mass of each object is doubled?

3. Measure: Turn on Show grid. Place object A on the x axis at -20 and object B on the x axis at 20. The force on object A is now 0.0417i + 0j N. That means that the force is 0.0417 newtons in the x direction (east) and 0.0 newtons in the y direction (north).

A. What is the magnitude of the force on object A?

B. What is the magnitude of the force on object B?

4. Gather data: You can change the mass of each object by clicking in the text boxes. For each mass combination listed in the table below, write magnitude of the force on object A. Leave the last two columns of the table blank for now.

mA (kg)

mB (kg)

|FA| (N)

Force factor

mA × mB (kg2)

10.0 × 105 kg

10.0 × 105 kg

 

 

 

10.0 × 105 kg

20.0 × 105 kg

 

 

 

20.0 × 105 kg

20.0 × 105 kg

 

 

 

20.0 × 105 kg

30.0 × 105 kg

 

 

 

5. Calculate: To determine how much the force is multiplied, divide each force by the first value, 0.0417 N. Round each value the nearest whole number and record in the "Force factor" column.

Next, calculate the product of each pair of masses. Fill in these values in the last column. Compare these numbers to the "Force factor" numbers.

(Activity A continued on next page)

Activity A (continued from previous page)

6. Analyze: How much does the force increase if each mass is doubled?

7. Analyze: How do the force factors compare to the products of the masses?

8. Apply: What would you expect the force to be if the mass of object A was 50.0 × 105 kg and the mass of object B was 40.0 × 105 kg?

Check your answer with the Gizmo.

9. Draw conclusions: How do the masses of objects affect the strength of gravitational force?

10. Summarize: Fill in the blank: The gravitational force between two objects is proportional to the _________________________ of the masses of the objects.

11. Apply: Suppose an elephant has a mass of 1,800 kg and a person has a mass of 75 kg. If the strength of gravitational force on the person was 735 N, what would be the gravitational force on the elephant? (Assume both the person and elephant are on Earth's surface.)

Show your work:

Question: How does distance affect the strength of gravitational force?

1. Form hypothesis: How do you think the distance between objects A and B will affect the strength of the gravitational force between them?

2. Predict: How do you think the gravitational force between two objects will change if the distance between the objects is doubled?

3. Measure: Place object A on the x axis at -5 and object B on the x axis at 5.

A. What is the distance between the two objects?

B. What is the magnitude of the force on object A?

4. Gather data: For each set of locations listed below, record the distance and the force on object A. Leave the last two columns blank for now.

Object A

Object B

Distance (m)

|FA| (N)

Force factor

1/ Distance2

(-5, 0)

(5, 0)

 

 

 

 

(-10, 0)

(10, 0)

 

 

 

 

(-15, 0)

(15, 0)

 

 

 

 

(-20, 0)

(20, 0)

 

 

 

 

5. Interpret: How does increasing the distance affect the force?

6. Calculate: To calculate the force factor, divide each force by the original force (0.667 N). Write each force factor with three significant digits. Next, calculate the reciprocal of the square of each distance and fill in the last column of the table. Write each of these values with three significant digits as well. (The unit of 1/distance 2 is square meters, or m2.)

(Activity B continued on next page)

Activity B (continued from previous page)

7. Analyze: Compare the force factors to the 1/distance2 values in your table. What is the relationship between these values?

8. Apply: What would you expect the force to be if the distance was 50 meters?

Use the Gizmo to check your answer.

9. Make a rule: Based on the measured force between objects that are 10 meters apart, how can you find the force between objects that are any distance apart?

10. Summarize: Fill in the blanks: The gravitational force between two objects is proportional to the ____________________ of the distance ____________________

11. Challenge: In activity A, you found that the gravitational force between two objects is proportional to the product of their masses. Combine that with what you have learned in this activity to complete the universal formula for the force of gravity below. (Hint: In the equation, G is a constant.) Check your answer with your teacher.

12. On your own: Use the Gizmo to find the value of G in the formula above. List the value and describe how you found it below. The units of G are newton · meter2 ÷ kilograms2, or N·m2/kg2. Check your answer with your teacher.

Physics, Academics

  • Category:- Physics
  • Reference No.:- M91884547
  • Price:- $50

Priced at Now at $50, Verified Solution

Have any Question?


Related Questions in Physics

Question oppositely charged parallel plates are separated

Question: Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the ma ...

Question an object of mass m attached to a spring of force

Question: An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement from equilibrium is A and the total mechanical energy of the system is E. What is th ...

Quesion when a nucleus of 235u undergoes fission it breaks

Quesion: When a nucleus of 235U undergoes fission, it breaks into two smaller, more tightly bound fragments. Part A: Calculate the binding energy per nucleon for 235U. Express your answer with the appropriate units. E=__ ...

Question a nylon rope used by mountaineers elongates 130 m

Question: A nylon rope used by mountaineers elongates 1.30 m under the weight of a 65.0-kg climber. If the rope is 45.0 m in length and 7.0 mm in diameter, what is Young's modulus for this material? The response must be ...

Question an object is 30 cm in front of a converging lens

Question: An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. What are the image characteristics: (i) upright or inverted, (ii) magnifica ...

Question an object of mass m is traveling on a horizontal

Question: An object of mass m is traveling on a horizontal surface. There is a coefficient of kinetic friction µ between the object and the surface. The object has speed v when it reaches x=0 and encounters a spring. Th ...

Question in one of the classic nuclear physics experiments

Question: In one of the classic nuclear physics experiments at the beginning of the 20th century, an alpha particle was accelerated towards a gold nucleus and its path was substantially deflected by the Coulomb interacti ...

Question an object of mass m is dropped from height h above

Question: An object of mass m is dropped from height h above a planet of mass M and radius R. Find an expression for the object's speed as it hits the ground. Express your answer in terms of the variables m,M,h,R and app ...

Question one type of bb gun uses a spring-driven plunger to

Question: One type of BB gun uses a spring-driven plunger to blow the BB from its barrel. (a) Calculate the force constant of its plunger's spring if you must compress it 0.130 m to drive the 0.0580-kg plunger to a top s ...

Question an object is placed 30 cm to the left of a

Question: An object is placed 30 cm to the left of a converging lens that has a focal length of 15cm. Describe what the resulting image look like (i.e. image distance, magnification, upright or inverted images, real or v ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As