Ask Physics Expert

Part 1: Light, Energy, and the Hydrogen Atom

• a. Which has the greater wavelength, blue light or red light?

• b. How do the frequencies of blue light and red light compare?

• c. How does the energy of blue light compare with that of red light?

• d. Does blue light have a greater speed than red light?

• e. How does the energy of three photons from a blue light source compare with the energy of one photon of blue light from the same source? How does the energy of two photons corresponding to a wavelength of 451 nm (blue light) compare with the energy of three photons corresponding to a wavelength of 704 nm (red light)?

• f. A hydrogen atom with an electron in its ground state interacts with a photon of light with a wavelength of 1.22 × 10-6m. Could the electron make a transition from the ground state to a higher energy level? If it does make a transition, indicate which one. If no transition can occur, explain.

• g. If you have one mole of hydrogen atoms with their electrons in the n = 1 level, what is the minimum number of photons you would need to interact with these atoms in order to have all of their electrons promoted to the n = 3 level? What wavelength of light would you need to perform this experiment?

Part 2: Investigating Energy Levels

Consider the hypothetical atom X that has one electron like the H atom but has different energy levels. The energies of an electron in an X atom are described by the equation E = - (RH / n3) where RHis the same as for hydrogen (2.179 ×10-18J). Answer the following questions, without calculating energy values.

• a. How would the ground-state energy levels of X and H compare?

• b. Would the energy of an electron in the n = 2 level of H be higher or lower than that of an electron in the n = 2 level of X? Explain your answer.

• c. How do the spacings of the energy levels of X and H compare?

• d. Which would involve the emission of a higher frequency of light, the transition of an electron in an H atom from the n = 5 to the n = 3 level or a similar transition in an X atom?

• e. Which atom, X or H, would require more energy to completely remove its electron?

• f. A photon corresponding to a particular frequency of blue light produces a transition from the n = 2 to the n = 5 level of a hydrogen atom. Could this photon produce the same transition (n = 2 to n = 5) in an atom of X? Explain.

Part 3: Periodic Properties I

A hypothetical element, X, has the following ionization energy values:

First ionization energy: 900 kJ/mol
Second ionization energy: 1750 kJ/mol
Third ionization energy: 14,900 kJ/mol
Fourth ionization energy: 21,000 kJ/mol
Another element, Y, has the following ionization energy values:
First ionization energy: 1200 kJ/mol
Second ionization energy: 2500 kJ/mol
Third ionization energy: 19,900 kJ/mol
Fourth ionization energy: 26,000 kJ/mol

• a. To what family of the periodic table would element X be most likely to belong? Explain?

• b. What charge would you expect element X to have when it forms an ion?

• c. If you were to place elements X and Y into the periodic table, would element Y be in the same period as element X? If not in the same period, where might they be relative to each other in the periodic table?

• d. Would an atom of Y be smaller or larger than an atom of X? Explain your reasoning.

Part 4: Periodic Properties II

Consider two hypothetical elements, W and Z. Element W has an electron affinity of -150 kJ/mol, and element Z has an electron affinity of -38 kJ/mol.

• a. If you have a W- ion and a Z- ion, from which ion would it require more energy to remove an electron? Explain your answer.

• b. If elements W and Z are in the same period of the periodic table, which atom would you expect to have the greater atomic radius? Why?

• c. Assuming that the elements are in the same period, which element would you expect to have the smaller first ionization energy?

• d. Do the valence electrons in element Z feel a greater effective nuclear charge than those in element W? Explain how you arrived at your answer.

Physics, Academics

  • Category:- Physics
  • Reference No.:- M91631490
  • Price:- $60

Priced at Now at $60, Verified Solution

Have any Question?


Related Questions in Physics

Question oppositely charged parallel plates are separated

Question: Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the ma ...

Question an object of mass m attached to a spring of force

Question: An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement from equilibrium is A and the total mechanical energy of the system is E. What is th ...

Quesion when a nucleus of 235u undergoes fission it breaks

Quesion: When a nucleus of 235U undergoes fission, it breaks into two smaller, more tightly bound fragments. Part A: Calculate the binding energy per nucleon for 235U. Express your answer with the appropriate units. E=__ ...

Question a nylon rope used by mountaineers elongates 130 m

Question: A nylon rope used by mountaineers elongates 1.30 m under the weight of a 65.0-kg climber. If the rope is 45.0 m in length and 7.0 mm in diameter, what is Young's modulus for this material? The response must be ...

Question an object is 30 cm in front of a converging lens

Question: An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. What are the image characteristics: (i) upright or inverted, (ii) magnifica ...

Question an object of mass m is traveling on a horizontal

Question: An object of mass m is traveling on a horizontal surface. There is a coefficient of kinetic friction µ between the object and the surface. The object has speed v when it reaches x=0 and encounters a spring. Th ...

Question in one of the classic nuclear physics experiments

Question: In one of the classic nuclear physics experiments at the beginning of the 20th century, an alpha particle was accelerated towards a gold nucleus and its path was substantially deflected by the Coulomb interacti ...

Question an object of mass m is dropped from height h above

Question: An object of mass m is dropped from height h above a planet of mass M and radius R. Find an expression for the object's speed as it hits the ground. Express your answer in terms of the variables m,M,h,R and app ...

Question one type of bb gun uses a spring-driven plunger to

Question: One type of BB gun uses a spring-driven plunger to blow the BB from its barrel. (a) Calculate the force constant of its plunger's spring if you must compress it 0.130 m to drive the 0.0580-kg plunger to a top s ...

Question an object is placed 30 cm to the left of a

Question: An object is placed 30 cm to the left of a converging lens that has a focal length of 15cm. Describe what the resulting image look like (i.e. image distance, magnification, upright or inverted images, real or v ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As