Ask Physics Expert

One of the requirements for this course is an Aircraft Performance Research Project that entails planning a flight from Denver International Airport (KDEN) to Chicago O'Hare International Airport (KORD) for a given aircraft, weather conditions, and assumptions. Drawing on aeronautics theory and using the performance charts and equations presented in the course, each student is to answer a sequence of questions that step through the planning process. Remember, as with all of the exercises, all work (calculations) must be shown as much as possible. After all of the questions have been answered, the next task is to create a two-dimensional representation of the flight path showing the airspeeds, distance, fuel burned, and fuel remaining for the Takeoff, Climb, Cruise, Descent, and Approach phases of the flight.

Project Files - Save all of the files to your computer or a memory device for ready access outside of this course. In Week 5, familiarize yourself the project files to get an idea of the expectations.

Here are some important notes for this project:

1. Max takeoff weight may not be realized taking off from a high-density altitude airfield.

2. To find out how many passengers you can transport, you need to know how much fuel you need for the flight.

3. Make sure you don't exceed the max landing weight.

4. You might have to do some iterative calculations to complete the profile.

5. Show your work as much as possible.

6. Answers can vary due to chart interpretations and because one wrong answer will carry throughout the project.

Part -1:

1.1. Find Maximum Takeoff Weightfor the given conditions.Assume takeoff is at Max Recommended Takeoff weight accounting for Density altitude.

1.2. Find Takeoff Speeds: V1, V2, VR. Assume Min Speed due to VMCG Requirements is OK.

1.3. Find Flap Retraction Speed (KIAS).

1.4. Find Slat Retraction Speed (KIAS).

1.5. Find Critical Field Length (ft).

1.6. Find Distance to Accelerate and Stop with a Single Engine Failure at V1 (ft).

1.7. Find Distance to Liftoff with Single Engine Failure at V1 and continue Takeoff(ft).

1.8. Find Two Engine Takeoff Ground Roll (ft).

1.9. Isthe runway long enough at KDEN to safely takeoff?

Part -2:

2.1. Find Climb Schedule (Airspeed/Mach to be flown in the Climb).

2.2. Find Time to Climb (min).

2.3. Find Distance to Climb (nm).

2.4. Find Fuel for Climb (lb).

Part -3:

3.1. Find Cruise Indicated Airspeed (KIAS).

3.2. Find Cruise True Airspeed (KTAS).

3.3. Find Cruise Ground Speed (KGS).

3.4. Find Total Cruise Fuel Flow (lb/hr). Note, fuel flow listed is for each engine.

3.5. Find Cruise Mach (M).

3.6. Find Cruise Specific Range (nm/1000lb).

3.7. Find Maximum Level Flight Speed: Max Thrust at the Top of Climb Weight.

Part -4:

4.1. Find Decent Schedule (Airspeed/Mach to be flown in the Descent).

4.2. Find Time to Descent (min).

4.3. Find Fuel for Descent (lb).

4.4. Find Distance for Descent (nm).

Part -5:

5.1. Find Max endurance and holding speed for aircraft at GW 75k lb @10k ft Pressure Altitude.

Part -6:

6.1.Find Maximum passengers/baggage and fuel required for flight.

6.2. Find Reference Speed for predicted Landing Weight (KIAS).

6.3. Find Final Approach speedwith 50 degflaps (KIAS).

6.4. Find Landing DistanceFull Anti-Skid/ No Reverse Thrust/Full Spoilers(ft).

6.5. Find Max Angle of Bankfor Stick Shaker at Vref +5 for predicted Landing Weight.

Part -7:

7.1. Find Cruise FL350 Target Pitch Attitude and %N1.

7.2. Find Descent Profile.

7.3. Find Terminal Area Flight Profile (0 deg Flaps).

7.4. Find Final Approach Profile (50 deg Flaps).

Part -8:

8.1. Find average takeoff acceleration using takeoff ground roll and VR. (Hint. Convert VR to KTASand then to Ground Speed.)

8.2. Find average drag on takeoff roll assuming constant thrust. Account for reduced thrust at higher density altitude: Use Equation 6.5, let x = 0.8, and constant rolling friction.
Assume no lift on wings until rotation.

8.3. Find Stall Speed (KIAS) at Takeoff weight with flaps at 15 degand slats extended.

8.4. Find CLMAX at Takeoff weight with flaps at 15 degand slats extended.

8.5. Find Stick Shaker Speed (KIAS) at Takeoff weight with Flaps at 15 degand slats extended.

8.6. Find CL at Stick Shaker Speed with flaps at 15 degand slats extended.

8.7. Find Airspeed Envelope Maximum and Minimum Mach for Wings Level, GW 80,000 lb, and FL350 based on Buffet Boundary.

8.8. Find Maximum Load factor (g) and AOB at FL350 and GW 80,000 lb for buffet free flight.

8.9. Find Initial Climb Gradient for Takeoff Conditions fora single engine.

8.10. Find Initial Rate of Climb for a single-engine takeoff

8.11. Find Excess Thrust (lb) for initial single engine climb. Assume V= 1.23 Vs and V is converted to TAS.

8.12. Ifboth engines flameout at FL350 125 nm prior to Chicago, and you fly at best glide speed, will you make Chicago on a flameout approach?

8.13. Find Drag (Thrust Required) at (L/D)max at Sea Level Takeoff weight.

8.14. Find Temperature Ram Rise at Cruise Mach for a standard temperature probe assuming 100% recovery.

Physics, Academics

  • Category:- Physics
  • Reference No.:- M91313474
  • Price:- $70

Priced at Now at $70, Verified Solution

Have any Question?


Related Questions in Physics

Question oppositely charged parallel plates are separated

Question: Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the ma ...

Question an object of mass m attached to a spring of force

Question: An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement from equilibrium is A and the total mechanical energy of the system is E. What is th ...

Quesion when a nucleus of 235u undergoes fission it breaks

Quesion: When a nucleus of 235U undergoes fission, it breaks into two smaller, more tightly bound fragments. Part A: Calculate the binding energy per nucleon for 235U. Express your answer with the appropriate units. E=__ ...

Question a nylon rope used by mountaineers elongates 130 m

Question: A nylon rope used by mountaineers elongates 1.30 m under the weight of a 65.0-kg climber. If the rope is 45.0 m in length and 7.0 mm in diameter, what is Young's modulus for this material? The response must be ...

Question an object is 30 cm in front of a converging lens

Question: An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. What are the image characteristics: (i) upright or inverted, (ii) magnifica ...

Question an object of mass m is traveling on a horizontal

Question: An object of mass m is traveling on a horizontal surface. There is a coefficient of kinetic friction µ between the object and the surface. The object has speed v when it reaches x=0 and encounters a spring. Th ...

Question in one of the classic nuclear physics experiments

Question: In one of the classic nuclear physics experiments at the beginning of the 20th century, an alpha particle was accelerated towards a gold nucleus and its path was substantially deflected by the Coulomb interacti ...

Question an object of mass m is dropped from height h above

Question: An object of mass m is dropped from height h above a planet of mass M and radius R. Find an expression for the object's speed as it hits the ground. Express your answer in terms of the variables m,M,h,R and app ...

Question one type of bb gun uses a spring-driven plunger to

Question: One type of BB gun uses a spring-driven plunger to blow the BB from its barrel. (a) Calculate the force constant of its plunger's spring if you must compress it 0.130 m to drive the 0.0580-kg plunger to a top s ...

Question an object is placed 30 cm to the left of a

Question: An object is placed 30 cm to the left of a converging lens that has a focal length of 15cm. Describe what the resulting image look like (i.e. image distance, magnification, upright or inverted images, real or v ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As