Nilpotent transformation
Consider the transformation N: V->V. Let g be a vector such that N^k-1 does not equal 0, but N^k = 0. First show that the vectors g,N(g),N^2(g),..,N^k-1(g) are linearly independent, and then (assuming V has dimension n) If N is nilpotent of index n, show that the set S= {g, N(g), N^2(g),...,N^n-1(g)}is a basis for V. Describe the matrix which represents N with respect to the basis S.