Ask Math Expert


Home >> Math

Math 104: Homework 8- Curve sketching

At this point in the class, being able to sketch functions and determine their properties is an important skill, which will greatly help in understanding concepts such as continuity, differentiability, and uniform convergence. Therefore, this week's homework is mainly devoted to this topic.

In the following questions, no detailed proofs are required, although you will need to provide some discussion in words about what is going on. To begin, I would like you to try and draw the graphs by hand. There are many ways to do this, such as looking at the behavior as x → ±∞, calculating a few specific points and drawing a line through them, using calculus, or searching for zeroes of the function.

After this, you can confirm your results using a plotting program. There are many free ones available, such as Gnuplot (www.gnuplot.info), which runs on Windows, Mac, and Linux.

1. Consider the function

1144_Figure.png

defined on the interval [0, ∞). Draw f(x).

(a) Draw f(x/2), f(x/3), and f(x/4), and explain how the shapes of these curves relate to f(x).

(b) Draw 2 f(x), f(x + 1/2), f(x) - 1/2 and explain how the shapes of these curves relate to f(x).

(c) Draw | f(x) - 1/2|. Is this function continuous? Is it differentiable everywhere?

(d) Draw f(x2) and f(x)2.

2. Consider the sequence of functions

fn(x) = nx2/1 + nx2

defined on the interval [0, ∞).

(a) Begin by considering f1(x). How does it behave as x → ∞? How does it look close to x = 0? Use these facts to draw f1(x).

(b) Show that fn(x) = f1(√nx). By considering question 1(a), use this fact to draw several of the fn(x).

(c) It can be shown that fn converges pointwise to a function f defined on [0, ∞) as

311_Figure1.png

Draw f(x) and draw a strip of width ε = 1/4 around f(x). If fn → f uniformly, then there exists an N such that n > N implies that fn lies wholly within this strip. Use the graph to explain in words why no such N exists, so that fn does not converge uniformly to f.

3. Consider the sequence of functions defined on R as

916_Figure2.png

(a) Draw the sequence of functions f0(x), f1(x) and f2(x). Which of the functions are continuous at x = 0? Which of them are differentiable at x = 0?

(b) Consider the functions fn on the interval [-1/2, 1/2], and define f(x) = 0. By considering a strip of width e around f(x), explain why fn will converge uniformly to f on this interval.

4. Plot the functions

  • f1(x) = x2(x - 1)(x - 2)
  • f2(x) = |f1(x)|
  • f3(x) = x/1+x2
  • f4(x) = |x| + |x - 2|
  • f5(x) = |x| - 2|x - 1| + |x - 2|

For each function, write down any values of x where it is not differentiable.

5. Consider the function g0(x) = |x| on R. For n ∈ N, define gn(x) = |gn-1(x) -21-n|.

(a) Draw g0(x), g1(x), g2(x), and g3(x).

(b) Optional for the enthusiasts. Prove that the functions gn converge uniformly to a limit g on R.

Math, Academics

  • Category:- Math
  • Reference No.:- M91814530

Have any Question?


Related Questions in Math

Questions -q1 prove the following identitiesa sinx y sinx

Questions - Q1. Prove the following identities a. sin(x + y) + sin(x - y) = 2 sin x cos y b. sec(x - y) = cos(x + y)/(cos 2 x - sin 2 y) c. tan 2 x - sin 2 x = (tan x sin x) 2 Q2. Solve the following equations for x ∈ [0 ...

Maths assignment - 1 analysis of a data setusing a

Maths Assignment - 1. Analysis of a data set Using a continuous data set you are requested to collect in the types of data and gathering data section, perform a statistical analysis on your data. You have opportunities t ...

Questions - provide solution to the following questionsq1

Questions - Provide solution to the following questions: Q1. Evaluate the following: ∫xsin3xdx Q2. If , then for what value of α is A an identity matrix? Q3. The line y = mx + 1 is a tangent to the curve y 2 = 4x. Find t ...

Assessment taskpractical investigation- question 1 requires

Assessment Task Practical Investigation - Question 1 requires selecting reference points from the graph. It is expected that each student will choose different reference points to other students. Take note of the criteri ...

1 suppose that n 10088821 is a product of two distinct

1. Suppose that n = 10088821 is a product of two distinct primes, and Φ(n) = 10082272. Determine the prime factors of n. 2. It is easy to show that the converse of Fermat's Theorem does not hold; i.e., the congruence a n ...

Assignment -question 1 let t and or 0 1 be a boolean

Assignment - Question 1. Let (T, ∧, ∨,', 0, 1) be a Boolean Algebra. Define ∗ : T × T → T and o : T × T → T as follows: x ∗ y := (x ∨ y)' x o y := (x ∧ y)' (a) Show, using the laws of Boolean Algebra, how to define x ∗ y ...

Assignment - provide solution to the following questionsq1

Assignment - Provide solution to the following questions: Q1. Evaluate the following: ∫xsin3x dx Q2. If , then for what value of α is A an identity matrix? Q3. The line y = mx + 1 is a tangent to the curve y 2 = 4x. Find ...

Question 1 what is the nth order approximation using taylor

Question: 1. What is the nth order approximation using Taylor series? 2. What is Error Propagation? 3. Please explain what the total numerical error is? Please illustrate how the change of step size will affect the total ...

Mathematics- algebraic geometry problemlet k denotes an

Mathematics- Algebraic Geometry Problem Let K denotes an algebraically closed field and let P 1 be constructed as in Example 5.5(a) in Gathmanns notes, i.e. P 1 is the gluing of X 1 = A 1 and X 2 = A 1 along  the open su ...

Mathematics- algebraic geometry problemlet k denotes an

Mathematics- Algebraic Geometry Problem Let K denotes an algebraically closed field and let P 1 be constructed as in Example 5.5(a) in Gathmanns notes, i.e. P 1 is the gluing of X 1 = A 1 and X 2 = A 1 along  the open su ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As