Ask Algebra Expert

Let F be a field and . Then is an n - dimensional vector space
over F. Define a function by .

(a) Show that T is a linear operator.

(b) Find the characteristic and minimal polynomials for T, with explanation. (For the characteristic polynomial, recall that you will need to choose a basis for , find the matrix of T relative to that basis, and find the characteristic polynomial of the matrix.)

(c) By Example 47, we can use T to make into a module over the polynomial ring . Show that is cyclic by giving a generator for M, with explanation. Find the (as defined in Exercise 38).

Example 47) Let F be a field and Let be the polynomial ring over F. What does it mean for an Abelian group M to be a module over ?
First, note that the "constant polynomials" in form a copy of the
field F. Thus scalar multiplication of on M gives scalar multiplication of F on M, which makes M a vector space over F.

Second, consider the function defined by . (That is, equals the result of multiplying the polynomial x by v, using scalar multiplication of on M.) For any and , the requirements (M, where M are the properties of a module-see below) on the scalar multiplication imply and . That is, T is a linear operator on the F-vector space M.

Then given any and , the properties (M) imply

Conversely, suppose that M is any F-vector space and is a linear operator on M. We can define a scalar multiplication on on M by . This satisfies the requirements, making M an -module.

Exercise 38) Let M be an R-module. The annihilator of M in R is defined by
. Show that is an ideal of R.

Definition: Let R be a commutative ring with identity 1. A module over R (also called an R - module) is an Abelian group M (operation written +) together with a scalar multiplication which associates to each and an element rm of M; and , we require:

Algebra, Academics

  • Category:- Algebra
  • Reference No.:- M91750889
  • Price:- $40

Priced at Now at $40, Verified Solution

Have any Question?


Related Questions in Algebra

Assignment topic - abstract algebraq1 let r be the ring of

Assignment Topic - Abstract Algebra Q1: Let R be the ring of all 2 X 2 matrices over Z p , p is a prime. Let G be the set of elements x in the ring R such that det(x) ≠ 0. Find the order of G. Q2: If R is a commutative r ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As