Ask Physics Expert

Learning Goal: To understand length contraction and time dilation.

In classical physics, and in your everyday experience, lengths and times seem to be the same no matter who measures them. In fact, the notion that lengths or time intervals might be different depending on who measures them can seem profoundly disturbing (or just plain silly), because measuring space and time are two of the most fundamental ideas in physics. However, Einstein's special theory of relativity shows that space and time are not as fundamental or as absolute as you are accustomed to believing.

To discuss measurements more precisely, you must consider both the thing being measured and the person (technically the frame of reference) doing the measuring. An inertial frame of reference is a frame of reference (i.e., a consistent way of measuring distances and times) that is not accelerating. An inertial frame of reference moves at a constant speed, relative to other inertial frames of reference.

When making a measurement of some object's length, you would like to make the measurement while whatever you are measuring is in the same inertial frame as you (i.e., at rest relative to you). This sort of measurement gives the proper length lo of an object. Similarly, it is preferred that you measure the time interval between two events when the events occur in the inertial reference frame that you are in. This sort of measurement yields the proper time t0 When making measurements of events in an inertial reference frame different from your own, what you measure will be related to the proper time and length, as well as the relative speed between the two frames. The measured length and time are given by the following two equations:

t = to/√1-u2/c2 and l = lo √1-u2/c2

where c is the speed of light, t is the measured time, and l is the measured length in the direction of motion.
Part A

Suppose that you measure the length of a spaceship, at rest relative to you, to be 400m . How long will you measure it to be if it flies past you at a speed of μ = .75c?
Express the length l in meters to three significant figures.

Part B

The spaceship from Part A has a large clock attached to its side. This clock ran at the same rate as your watch when you were in the same reference frame. How much time t will pass on your watch as 80s passes on the clock?

Two spaceships, unimaginatively named A and B, are flying toward each other with relative speed .

Part C

If the captain of ship A fires a missile, counts 10.0s on his watch, and then fires a second missile, how much time t will the captain of ship B measure to have passed between the firing of the two missiles?

Part D

The captain of ship B knows that ship A uses 2-m-long missiles. She measures the length of the first missile, once it has finished accelerating, and finds it to be only 0.872m long. What is the speed u of the missile, relative to ship B?

Express your answer in meters per second to three significant figures. Use c= 3*108m/s

It should be noted that the same equations apply to events in your everyday life. The reason that you don't notice them is that things in your everyday life move so much slower than the speed of light. Now let's look at the differences in measurements between two frames moving relative to one another at a speed of 30m/s (108kph or about 67mph ). Your calculator may not be able to store enough digits to work these problems accurately, so you may need to use the approximations from the binomial expansion:

Part E

What would be the difference between the time t measured by an observer moving at 30m/s and the proper time T0 for a proper time interval of 1 hour (3600 s)? The answer is small but nonzero. You will need to find an expression for the time difference using the approximation given in this problem before you substitute in the numbers; otherwise your calculator will just give zero.

Physics, Academics

  • Category:- Physics
  • Reference No.:- M91631083
  • Price:- $20

Priced at Now at $20, Verified Solution

Have any Question?


Related Questions in Physics

Question oppositely charged parallel plates are separated

Question: Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the ma ...

Question an object of mass m attached to a spring of force

Question: An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement from equilibrium is A and the total mechanical energy of the system is E. What is th ...

Quesion when a nucleus of 235u undergoes fission it breaks

Quesion: When a nucleus of 235U undergoes fission, it breaks into two smaller, more tightly bound fragments. Part A: Calculate the binding energy per nucleon for 235U. Express your answer with the appropriate units. E=__ ...

Question a nylon rope used by mountaineers elongates 130 m

Question: A nylon rope used by mountaineers elongates 1.30 m under the weight of a 65.0-kg climber. If the rope is 45.0 m in length and 7.0 mm in diameter, what is Young's modulus for this material? The response must be ...

Question an object is 30 cm in front of a converging lens

Question: An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. What are the image characteristics: (i) upright or inverted, (ii) magnifica ...

Question an object of mass m is traveling on a horizontal

Question: An object of mass m is traveling on a horizontal surface. There is a coefficient of kinetic friction µ between the object and the surface. The object has speed v when it reaches x=0 and encounters a spring. Th ...

Question in one of the classic nuclear physics experiments

Question: In one of the classic nuclear physics experiments at the beginning of the 20th century, an alpha particle was accelerated towards a gold nucleus and its path was substantially deflected by the Coulomb interacti ...

Question an object of mass m is dropped from height h above

Question: An object of mass m is dropped from height h above a planet of mass M and radius R. Find an expression for the object's speed as it hits the ground. Express your answer in terms of the variables m,M,h,R and app ...

Question one type of bb gun uses a spring-driven plunger to

Question: One type of BB gun uses a spring-driven plunger to blow the BB from its barrel. (a) Calculate the force constant of its plunger's spring if you must compress it 0.130 m to drive the 0.0580-kg plunger to a top s ...

Question an object is placed 30 cm to the left of a

Question: An object is placed 30 cm to the left of a converging lens that has a focal length of 15cm. Describe what the resulting image look like (i.e. image distance, magnification, upright or inverted images, real or v ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As