Ask Biology Expert

LAB EXPERIMENT: DNA and Protein Synthesis

Learning Objectives

Upon completion of this laboratory, you will be able to:

? Review the structure and function of DNA.
? Identify the codons that code for amino acids in DNA and RNA.
? Explain the purpose of start and stop codons in protein synthesis.
? Summarize the steps involved in protein synthesis and define a ribosome and its three sites.
? Summarize the steps of transcription, including: initiation, elongation, and termination.
? Summarize the steps of translation, including; initiation, elongation, and termination.
? Illustrate and model the processes of transcription and translation.
? Construct a series of tRNA molecules and write the anti-codons and amino acids each tRNA carries.
? Explain the difference in the number of amino acids that were present at the start and at the end of the translation model.

Exercise 1: Protein Synthesis

In this exercise, you will model the steps of protein synthesis, starting with a single strand of nucleotides and ending with a protein.

1. Print 6 copies of the DNA Nucleotide Template, 4 copies of the RNA Nucleotide Template, and 1 copy of the tRNA Template. It is preferable, but not necessary, to print them in color. The templates are located in the "Supplemental Documents" folder of your digital courseware.

2. Review the coding strand of DNA (5' to 3') in Data Table 1 of your Lab Report Assistant.

3. Create the template strand of DNA (3' to 5') and record in Data Table 1.

4. Gather the scissors, tape, and the 6 printed copies of the DNA Nucleotide Template. Cut out the nucleotides from the template. It is not necessary to cut out the entire nucleotide; rather, cut the nucleotide in a rectangular shape, only cutting out the details of the nitrogenous bases. See Figure 5.

5. Using the DNA nucleotides, create the entire double strand of DNA by matching up and taping together the base pairs. See Figure 6 as an example.

6. Take a photograph of the completed double strand of DNA with your name and the data showing in the photograph. Resize and insert the photograph into Data Table 2 of your Lab Report Assistant. Refer to the appendix entitled "Resizing an Image" for guidance with resizing an image.

7. Determine the mRNA strand that transcription would produce from the DNA template strand and record the mRNA strand in Data Table 1.

8. Gather the 4 printed copies of the RNA Nucleotide Template. Cut out the nucleotides from the template. It is not necessary to cut out the entire nucleotide; rather, cut the nucleotide in a rectangular shape, only cutting out the details of the nitrogenous bases.

9. Using the RNA nucleotides, create the mRNA strand by matching up and taping together the base pairs.

10. TakeaphotographofthemRNAstrandwithyournameandthedateshowinginthephotograph. Resize and insert the photograph in Data Table 2.

11. Starting with the first mRNA nucleotide, determine what amino acids the codons in the mRNA are coding for and record in Data Table 1.

12. Gather the printed copy of the tRNA Template and cut out the tRNAs.

13. Build the line of tRNAs that would flow into the A site during translation. Write the anti- codons into each tRNA and the amino acid the mRNA codes for. See Figure 7 as an example of the tRNA that would be created from the mRNA codons CCU.

14. Take a photograph of the tRNAs (in order) with your name and the date showing in the photograph. Resize and insert the photograph in Data Table 2.

15. Write the name of the each amino acid in the final protein created from translation and record in Data Table 1.

16. When you are finished uploading photos and data into your Lab Report Assistant, save your file correctly and zip the file so you can send it to your instructor as a smaller file. Refer to the appendix entitled "Saving Correctly" and the appendix entitled "Zipping Files" for guidance with saving the Lab Report Assistant correctly and zipping the file.

Questions

A. How many amino acids were coded for by the mRNA? How many amino acids were present in the final protein chain created in translation? In detail, explain the differences in the two numbers; why were some amino acids coded for by the mRNA but not present in the final protein chain? What amino acids were omitted from the final protein chain? Explain your answers.

Attachment:- Attachments.rar

Biology, Academics

  • Category:- Biology
  • Reference No.:- M92240154
  • Price:- $65

Guranteed 36 Hours Delivery, In Price:- $65

Have any Question?


Related Questions in Biology

Case study question -case study - mary 21 years old

Case Study Question - Case Study - Mary, 21 years old, presented to the hospital emergency department with an infected laceration on her left foot. Mary was at a beach resort four days ago, when she trod on a broken glas ...

Assignment -the upper-case blue letters are the 14th exon

Assignment - The upper-case, blue letters are the 14th exon (of 20) in the Hephl1 gene in mice. The lower-case (black) letters are from the flanking introns.  The highlighted bases indicate primers that may be used to ge ...

Question - a pure strain of mendels peas dominant for all

Question - A pure strain of mendel's peas, dominant for all seven of his independently assorting genes, was testcrossed. How many different kinds of gametes could the F1 PRODUCE?

Igfbp2 rbp4 and factor d post bariatric surgeryigfbp2 what

IGFBP2/ RBP4 and Factor D Post Bariatric Surgery IGFBP2 ( what the normal physiological action in the body? And how it affectedby obesity? andpost bariatric surgery?) RBP4 (what the normal physiological action in the bod ...

Assignment on nutrition - q1 task you need to select 2

Assignment on Nutrition - Q1. Task: You need to select 2 different age groups of your choice. You will need to plan balanced meals with snacks for a day. Once you have laid out the meal plan you need to: Explain why the ...

Question - gene cloning a please write the steps to clone

Question - Gene Cloning a) Please write the steps to clone the protease gene from Bacillus strain whose genome sequence is not known. b) Express the protease gene to obtain the enzyme in high yield, please plan your prot ...

Instructions address each question below as it relates to

Instructions: Address each question below as it relates to the caw study given. A patient was brought to the Emergency Department by ambulance with two arrow wounds. One arrow is still in the patient on the left side; en ...

Use of molecular tools and bioinforrnatics in the diagnosis

Use of Molecular Tools and Bioinforrnatics in the Diagnosis Characterization of Enteric Pathogens from a Case Study Purpose: The purpose of this project is to familiarize the student with modern molecular tools and bioin ...

Experiment 1 staining video1 open the media player by

Experiment 1: Staining Video 1. Open the Media Player by clicking on the film-strip button in the lower left of the lab's window frame, as shown below. The Media Player is a repository of images, videos, saved snapshots, ...

Chosen dr jan nolta- stem cell researcher head of uc davis

Chosen Dr. Jan Nolta- Stem Cell Researcher Head of UC Davis Stem Cell Program Director Topic Background: early Stem cells have the ability to develop into many different types of cells. Stem Cell Research is not without ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As