Ask Physics Expert

Lab Exercise 2: Acceleration
Follow the instructions and directions below for this lab. Disregard the outline in the manual for your LabPaq Kit.
Read this document entirely before starting your work.
Do not forget to record your measurements and partial results.
Submit a Laboratory Report through Moodle, as shown in the last section of this outline. Remember that the Laboratory Report should include the answers to the questions below.

GOAL 

To calculate the acceleration of an object rolling down an inclined plane.

INTRODUCTION

Acceleration is the change in the velocity of an object. Velocity is a vector quantity with both direction and magnitude. Acceleration is also a vector quantity with both direction and magnitude. If the speed of an object is changed, that object has accelerated either positively or negatively depending on whether it increased or decreased in speed. Another way to accelerate an object is to change its direction of movement. This means that a car going around a corner is undergoing acceleration because its velocity in terms of direction is changing even if the car's speed, as seen on the speedometer, is constant.

As discussed above, an object falling under the influence of gravity accelerates. From your studies, you can recall the key kinematic equations for the uniformly accelerated motion of an object starting from rest, where v = velocity, a = acceleration, and d = distance.

Using these equations it is then possible to solve for the unknown variables.

In this lab experiment, we will measure the time it takes for a marble to roll down an inclined plane. From the experimental data, we will then estimate the value of gravity (g).

PROCEDURE

Set up a ramp as shown in Figure 1 that will be our inclined plane. Depending on the distance of your ramp, mark intervals of 40 to 60 cm. For example, in Figure 1, the marks are at 50 cm. Ideally, the marks should be as separated as possible in order to obtain a better reading. The height of the ramp is also going to play a role in the accuracy of your measurements. The steeper the slope is, the ball will run down faster and will make measurements less accurate. Before starting with the measurements, you may want to run some trials in different conditions.

Figure 2: Experimental setup 

Figure 2 shows the setup used by a student who did this lab some time ago. In this case, the marks are spaced 40 cm. You also need to record the angle of the inclined plane making a plumb line with the protractor as shown in Figure 3.


Figure 3: Measuring the angle of an inclined plane


Measuring Time

Our procedure will consist of dropping the marble at the top of the inclined plane and measuring with the stopwatch the time it takes to reach each one of the markings, starting with the closest to the point where you release the marble. Using the example shown in Figure 1, we will first measure the time it takes for the ball to go from 0 cm to 50 cm. As we learned in Laboratory Experiment #1, it is always good practice to repeat the measurements several times (in our case 5 times) to reduce errors.

When we have taken and recorded the 5 trials for this first measurement, we will proceed by repeating the experiment but in this case measuring the time that it takes for the ball to reach the second mark (in the example of Figure 1, it will be from 0 to 100 cm).



Equations used for this experiment

The known variable in this experiment is the distance between the marks. The measured variable in this experiment is the time it takes for the ball to travel a specified distance.

For a body undergoing accelerated movement, the equations that we will use are: 


INITIAL PARAMETERS

QUESTION 1: 

What is the distance between two marks in your inclined plane?


QUESTION 2: 

What is the angle of your inclined plane with respect the horizontal? (0° would mean the inclined plane totally horizontal, so the ball would not move; 90° would mean the board totally vertical)


Write down these two values in the table we will use to record all our measurements. It will also be used at the end of the lab.




EXPERIMENTAL RESULTS

When we are finished with this experiment, we will have all the data in our table complete. We will, however, complete the table step by step.

Measurements from release point to 1st marking 

At this point, we will measure the time that it takes from the ball to travel from the release point to the first marking. Insert this distance in the appropriate column in the table below. Note that the distance should be the same for all the 5 trials in this first step. For example, if the distance between markings is 50 cm, d should be equal to 50 cm and so on.

Because we are here only concern with the time between the release point and the 1st marking, we can ignore the shaded section of the table.

Repeat these measurements 5 times, recording the time it took for the ball to reach the first marking.

Using the equations from Step 3, calculate the velocity and the acceleration. Calculate and record the Average and Standard Deviation of time, velocity and acceleration.







Measurements from release point to 2nd marking 

Repeat the previous step, now measuring the time that it takes for the ball to travel from the release point to the second marking. Complete the unshaded part of the table below. Keep in mind that d2 should be the double of d1.

Once again, measure the time and calculate velocity and acceleration. Calculate also the Average and Standard Deviation of your measurements.




Measurements from release point to 3rd marking

Repeat the same procedure, now measuring the time it takes for the ball to reach the 3rd marking. Complete the time below, taking into account that the values for the first and second markings are the same as you calculated in Steps 1 and 2.

If your inclined plane allows it, you may want to repeat the process for a 4th marking.

Completion of the table with time, velocity and acceleration

At this point, you should have all the data in the table completed. 



ANALYSIS OF RESULTS

QUESTION 3 

Newton's first law says a body at rest will remain at rest unless acted upon by an outside force, and a body in motion will continue in motion at the same speed and in the same direction unless acted upon by an outside force. What forces were acting on the marble as it traveled down the ramp?


QUESTION 4

Did the measured acceleration was about the same for the three (or four) sections of the experiment (Release point to 1st marking, to 2nd marking, etc) ?


QUESTION 5

Do you expect this acceleration to be constant or different for the three (or four) sections of this experiment? Explain your reasoning.


QUESTION 6

By looking at the Standard Deviation results for the calculated acceleration, which section of this experiment is the more precise? Explain your reasoning.


QUESTION 7

What was the average value of acceleration for the most precise section of this experiment?






QUESTION 8 

Intuitively, we can understand that the velocity (and therefore the acceleration) of the ball will increase as we increase the angle of the inclined plane. We can make the assumption that the acceleration of the ball is equal to: 

Expected acceleration = 9.8 m/s2 * sin (angle of inclined plane)

The angle of the inclined plane is the value that you measured in Question 2 and transcribed into the table. Using the measured value of the angle of the inclined plane, calculate the expected value of the acceleration.


QUESTION 9

Calculate the relative error between the measured value of acceleration (from Question 7) and the expected value of acceleration (from Question 8).


QUESTION 10

What do you think are the elements that may contribute to increasing this error? How would you solve them?




LABORATORY REPORT

Create a laboratory report using Word or another word processing software that contains at least these elements:

Introduction: what is the purpose of this laboratory experiment?
Description of how you performed the different parts of this exercise. At the very least, this part should contain the answers to questions 1-10 above. You should also include procedures, etc. Adding pictures to your lab report showing your work as needed always increases the value of the report.
Conclusion: What area(s) you had difficulties with in the lab; what you learned in this experiment; how it applies to your coursework and any other comments 

Physics, Academics

  • Category:- Physics
  • Reference No.:- M91301676
  • Price:- $50

Guranteed 36 Hours Delivery, In Price:- $50

Have any Question?


Related Questions in Physics

Question oppositely charged parallel plates are separated

Question: Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the ma ...

Question an object of mass m attached to a spring of force

Question: An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement from equilibrium is A and the total mechanical energy of the system is E. What is th ...

Quesion when a nucleus of 235u undergoes fission it breaks

Quesion: When a nucleus of 235U undergoes fission, it breaks into two smaller, more tightly bound fragments. Part A: Calculate the binding energy per nucleon for 235U. Express your answer with the appropriate units. E=__ ...

Question a nylon rope used by mountaineers elongates 130 m

Question: A nylon rope used by mountaineers elongates 1.30 m under the weight of a 65.0-kg climber. If the rope is 45.0 m in length and 7.0 mm in diameter, what is Young's modulus for this material? The response must be ...

Question an object is 30 cm in front of a converging lens

Question: An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. What are the image characteristics: (i) upright or inverted, (ii) magnifica ...

Question an object of mass m is traveling on a horizontal

Question: An object of mass m is traveling on a horizontal surface. There is a coefficient of kinetic friction µ between the object and the surface. The object has speed v when it reaches x=0 and encounters a spring. Th ...

Question in one of the classic nuclear physics experiments

Question: In one of the classic nuclear physics experiments at the beginning of the 20th century, an alpha particle was accelerated towards a gold nucleus and its path was substantially deflected by the Coulomb interacti ...

Question an object of mass m is dropped from height h above

Question: An object of mass m is dropped from height h above a planet of mass M and radius R. Find an expression for the object's speed as it hits the ground. Express your answer in terms of the variables m,M,h,R and app ...

Question one type of bb gun uses a spring-driven plunger to

Question: One type of BB gun uses a spring-driven plunger to blow the BB from its barrel. (a) Calculate the force constant of its plunger's spring if you must compress it 0.130 m to drive the 0.0580-kg plunger to a top s ...

Question an object is placed 30 cm to the left of a

Question: An object is placed 30 cm to the left of a converging lens that has a focal length of 15cm. Describe what the resulting image look like (i.e. image distance, magnification, upright or inverted images, real or v ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As