Ask Physics Expert

Lab 3 (Chapter 18, Lesson 3 and Sections 18.6 and 18.7) involves the vector characteristics of a moving charged object within a charged parallel plate capacitor. This simulation file name is "#15 Charge and Cap". A positively charged particle is moving horizontally when it enters the region between the plates of a capacitor as the simulation illustrates. (a)

Draw (sketch) the trajectory that the particle follows in moving through the capacitor. (b) When the particle is within the capacitor, which of the following four vectors, if any are parallel (||) to the electric field E inside the capacitor: the particle's displacement (), its velocity (v), its linear momentum (p), and its acceleration (a)? For each vector, explain why the vector is or is not parallel to the electric field of the capacitor.

Run simulation noting the particle's trajectory (as indicated by the "tracking" or "strobes") while inside the capacitor cavity. Also note the velocity and acceleration vector, v and A, respectively arrows.

Fill in the answers for the blanks in the Lab Answer Sheet at the end of this lab.

A capacitor is a charge storage device. A parallel plate capacitor consists of parallel conducting plates separated by an insulator. In this experiment, the insulator is air and there is equal but opposite charges (+Q and -Q) placed on each conducting plate (See Figure 18.25, Section 18.6 and 18.7 in your textbook). This virtual lab investigates the effects (if any) of a positively charged particle midway between the oppositely charged plates of a parallel plate capacitor moving in a + x-direction. Just as in Lab 3, there will exist an electrostatic (Coulomb) force on the charged particle when it is inside the capacitor.

In this lab, you will investigate electric field (E) lines. Electric charges create an electric field in space surrounding them. Electric field lines essentially give us a "map" of the direction and strength (magnitude) of the E field at various places in space. E lines are always directed away from positive charges and toward negative charges (see Figure 18.23, textbook Section 18.7, and Lesson 3). In Figure 18.27 the absence of E lines indicates that the electric field is relatively weak between the two positive charges. Since you will be performing in this experiment a virtual mapping of E lines for a certain charge distribution, carefully study Conceptual Example 13 ("Drawing Electric Field Lines") for the dos and don'ts of mapping E field lines.

Electric Field Lines Mapping Rules

-The E lines do not cross each other

-The closer the lines are together, the stronger the E in that region

-The field lines indicate the direction of E; the field points in the direction tangent to the field line at any point

-The lines are drawn so that the magnitude of the electric field, |E|, is proportional to the number of lines crossing unit area perpendicular to the lines. The closer the lines, the stronger the field

-E lines start on + charges and end on - charges; the number starting or ending is proportional to the magnitude of the charge.

Physics, Academics

  • Category:- Physics
  • Reference No.:- M91615702
  • Price:- $10

Priced at Now at $10, Verified Solution

Have any Question?


Related Questions in Physics

Question oppositely charged parallel plates are separated

Question: Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the ma ...

Question an object of mass m attached to a spring of force

Question: An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement from equilibrium is A and the total mechanical energy of the system is E. What is th ...

Quesion when a nucleus of 235u undergoes fission it breaks

Quesion: When a nucleus of 235U undergoes fission, it breaks into two smaller, more tightly bound fragments. Part A: Calculate the binding energy per nucleon for 235U. Express your answer with the appropriate units. E=__ ...

Question a nylon rope used by mountaineers elongates 130 m

Question: A nylon rope used by mountaineers elongates 1.30 m under the weight of a 65.0-kg climber. If the rope is 45.0 m in length and 7.0 mm in diameter, what is Young's modulus for this material? The response must be ...

Question an object is 30 cm in front of a converging lens

Question: An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. What are the image characteristics: (i) upright or inverted, (ii) magnifica ...

Question an object of mass m is traveling on a horizontal

Question: An object of mass m is traveling on a horizontal surface. There is a coefficient of kinetic friction µ between the object and the surface. The object has speed v when it reaches x=0 and encounters a spring. Th ...

Question in one of the classic nuclear physics experiments

Question: In one of the classic nuclear physics experiments at the beginning of the 20th century, an alpha particle was accelerated towards a gold nucleus and its path was substantially deflected by the Coulomb interacti ...

Question an object of mass m is dropped from height h above

Question: An object of mass m is dropped from height h above a planet of mass M and radius R. Find an expression for the object's speed as it hits the ground. Express your answer in terms of the variables m,M,h,R and app ...

Question one type of bb gun uses a spring-driven plunger to

Question: One type of BB gun uses a spring-driven plunger to blow the BB from its barrel. (a) Calculate the force constant of its plunger's spring if you must compress it 0.130 m to drive the 0.0580-kg plunger to a top s ...

Question an object is placed 30 cm to the left of a

Question: An object is placed 30 cm to the left of a converging lens that has a focal length of 15cm. Describe what the resulting image look like (i.e. image distance, magnification, upright or inverted images, real or v ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As