Ask Physics Expert

Impulses and Momentum

When a resultant force acts on an object, the object is accelerated. The acceleration of the object is proportional to the force and inversely proportional to the mass of the object. Algebraically this is expressed as a= F/m, or with the correct selection of units, F= ma. Since we know that acceleration is the rate of change of velocity, or a= dv/dt we can write

F = ma = m*dv/dt  or FΔt = mΔv

If the mass remains constant, mΔv = Δ(mv), and we have FΔt = Δ(mv)

The product of an object's mass and its velocity (mv) is known as the momentum, a vector quantity. The product of the resultant force and the time interval during which it acts (FΔt) is known as the inpulse. The relationship above thus states that the change in an object's momentum is equal to the applied impulse.

The Problem

In this experiment we shall allow an "explosion" caused by a compressed spring to push two loaded carts apart. We can measure their masses and the comparative resulting velocities. This enables us to compare their momenta. Knowing their comarative momenta allows us to compare the impulses acting on the two objects and the forces the objects exerted on each other during the explosion.

Comparing the Velocities of the Carts

Our apparatus of two carts, one of which has a spring- actuated plunger. The spring is compressed and the carts are placed together.

143_aa.png

The plunger can be released by a trigger, and the explosion causes the carts to fly apart. We shall use a trick to determine their comparative velocities. The carts are attached by a length of string that is slack before the explosion. The carts fly apart and move until the string is pulled tight; they are then abruptly stopped. Since the two carts (represented in the following by subscripts 1 and 2) move for the same length of time, the distances they travel ( s1 and s2 ) away from their starting points must be in the same ratio as their speeds (v1 and v2 ), or v1/v2 = s1/s2

Knowing the masses of the carts, we can calculate the ratio of their momenta after the explosion has occurred.

Making the Measurements

Mark the starting position of the cart with a piece of masking tape on the table top. With another piece of masking tape, mark the position the cart reaches after the explosion. You will want to repeat this several times to make sure that you have marked the correct distance. Place the two carts together in the starting position and mark the original position of the second cart. By placing the first in its final position and pulling the string tight, you can locate the final position of the second cart. You can now measure the distance each cart travels. Repeat this experiment for a variety of combinations of masses of the carts.

Obtaining results from the Data

Compute the ratio of the momenta of the carts. What do the momentum ratios suggest about the comparative magnitudes of the momenta of the carts after the explosion? Recalling that momentum is a vector quality, make a general statement about the total momentum of the combination before the explosion and after the explosion.

Compare the times during which the spring pushed on the carts. Compare the forces on the two carts during the explosion.

Cart 1

Mass (g)

position
released (cm)

position
caught (cm)

Displacement (centimeters)

Mass*Displacement

 700

100 

 

65.5

 

1,200

100

 

41.1 

 

 1,700

100

 

 20.7

 

2,300 

100

 

 11.1

 

2,700 

 100 

 

 4.5

 

1,700

100

 

43.1

 

Cart 2

Mass (g)

position
released (cm)

position
caught (cm)

Displacement (centimeters)

Mass*Displacement

 620

100 

 

61.5  

 

620

100

 

84.7 

 

 620

100

 

106.8 

 

620

100

 

114.4 

 

620

 100 

 

121 

 

1, 620

100

 

32.6

 

Questions

1. If both carts had exactly the same mass in trial 1, how would you expect their velocities to compare with each other? Why?

2. In the two- fragment explosion that results when a gun is fired, explain why the bullet acquires a high velocity while the gun does not.

3. When the spring is released, the rod pushes against one cart with a given force. This cart pushes back with an equal force. Explain why this means that the total force on the system of the two carts is zero.

4. If Ea and Eb are the kinetic energies of the two carts after the spring is released, prove that the ratio Ea /Eb is equal to the ratio mb /ma

Physics, Academics

  • Category:- Physics
  • Reference No.:- M91631271
  • Price:- $20

Priced at Now at $20, Verified Solution

Have any Question?


Related Questions in Physics

Question oppositely charged parallel plates are separated

Question: Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the ma ...

Question an object of mass m attached to a spring of force

Question: An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement from equilibrium is A and the total mechanical energy of the system is E. What is th ...

Quesion when a nucleus of 235u undergoes fission it breaks

Quesion: When a nucleus of 235U undergoes fission, it breaks into two smaller, more tightly bound fragments. Part A: Calculate the binding energy per nucleon for 235U. Express your answer with the appropriate units. E=__ ...

Question a nylon rope used by mountaineers elongates 130 m

Question: A nylon rope used by mountaineers elongates 1.30 m under the weight of a 65.0-kg climber. If the rope is 45.0 m in length and 7.0 mm in diameter, what is Young's modulus for this material? The response must be ...

Question an object is 30 cm in front of a converging lens

Question: An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. What are the image characteristics: (i) upright or inverted, (ii) magnifica ...

Question an object of mass m is traveling on a horizontal

Question: An object of mass m is traveling on a horizontal surface. There is a coefficient of kinetic friction µ between the object and the surface. The object has speed v when it reaches x=0 and encounters a spring. Th ...

Question in one of the classic nuclear physics experiments

Question: In one of the classic nuclear physics experiments at the beginning of the 20th century, an alpha particle was accelerated towards a gold nucleus and its path was substantially deflected by the Coulomb interacti ...

Question an object of mass m is dropped from height h above

Question: An object of mass m is dropped from height h above a planet of mass M and radius R. Find an expression for the object's speed as it hits the ground. Express your answer in terms of the variables m,M,h,R and app ...

Question one type of bb gun uses a spring-driven plunger to

Question: One type of BB gun uses a spring-driven plunger to blow the BB from its barrel. (a) Calculate the force constant of its plunger's spring if you must compress it 0.130 m to drive the 0.0580-kg plunger to a top s ...

Question an object is placed 30 cm to the left of a

Question: An object is placed 30 cm to the left of a converging lens that has a focal length of 15cm. Describe what the resulting image look like (i.e. image distance, magnification, upright or inverted images, real or v ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As