Ask Math Expert


Home >> Math

Exercise: Rectilinear Motion

The first part of this week's assignment is to choose and research a turbine powered (i.e. jet type) aircraft. You will further use your selected aircraft in subsequent assignments, so be specific and make sure to stay relatively conventional with your choice in order to prevent having trouble finding the required data during your later research. Also, if you find multiple numbers (e.g. for different aircraft series, different configurations, and/or different operating conditions), please pick only one for your further work, but make sure to detail your choice in your answer (i.e. comment on the condition) and stay consistent with that choice throughout subsequent work.

In contrast to formal research for other work in your academic program at ERAU, Wikipedia may be used as a starting point for this assignment.

Keep in mind that any theoretical solution to a complex, unique real world problem is based on models and generalizations, requiring certain assumptions and simplifications, and comes with a variety of limitations as to its applicability. Therefore, detailing conditions and selections is a fundamental part of a scientifically sound approach and documentation of your solution to the problems.

1. Selected Aircraft:

2. Maximum Takeoff Weight (MTOW) [lbs]:

3. Engine Type and Rated Thrust [lbs]:

4. Total Available Thrust (sum of all engines for multiengine aircraft) [lbs]:

5. Maximum Rate of Climb [ft/min]:

6. Take-off distance at MTOW [ft]:

Uniformly Accelerated Rectilinear Motion and Newton's Law of Momentum Equations:

F = ma                                                m = W/g

VF 2 = VI 2 + 2 a s                               g = 32.2 ft/sec2

VF = VI  + a t                                       Takeoff distance (s) = VF 2 /2a

KE = ½ mV2                                       PE = Wh

HP= T*Vkts /325                                 sin(γ) = (ROCkts)/(Vkts)

1 kt = 1.69 ft/sec                               

Remember to keep track of units, convert as required, and express answers in the requested unit. (Keep in mind that the initial velocity VI for takeoff is zero since we start from a standstill).

A. Using your researched data from 2. and 4. above compute the acceleration on the aircraft during the takeoff roll. [ft/sec2] (For this exercise, disregard friction and drag influences. Also, keep in mind that weight is not the same as mass.)

B. If your aircraft lifted off the ground at 150kts, what would be the length of the takeoff run? [ft]
(Watch for unit conversions.)

C. How much time would it take until liftoff at 150kts once the takeoff roll is started? [s]
(You will have to algebraically solve the given formula for time ‘t' first.)

D. Determine how fast the airplane should be going when it passes the 1000-foot runway marker (1000 feet from the start of the takeoff roll)?

(Apply the distance formula as you would for the takeoff run in Question B; however, the distance ‘s' is now known to be 1000ft and the unknown is the velocity ‘V'. Solve algebraically for ‘V'. Don't forget that results will have to be converted into kts.)

Similar to detailing assumptions and conditions at the onset, any quantitative result of our theoretical work also requires a qualitative discussion of applicability. The important question to discuss is how accurate our result will depict the real world. Possible errors should be identified, our certainty about results evaluated, and additional recommendations for further improvement provided.

Therefore, comment on your findings in Questions A through D. Compare your calculated takeoff distance in B with your research in Question 6. What elements did we neglect in the acceleration computed in Question A? How did it affect our further work in B through D?
(see & compare also formula given above with the calculation examples within the module)

E. What is the power [HP] of the aircraft engines after takeoff at the total available thrust (from Question 4) if flying at 200kts? (Remember, this formula already has unit conversions included)

F. What is the Kinetic Energy [ft-lb] of the aircraft at 200kts and Maximum Takeoff Weight (from Question 2)? (Remember, weight is not the same as mass, and watch for unit conversions.)

G. What is the Potential Energy [ft-lb] of the aircraft after climbing out to 10,000ft above sea level at Maximum Takeoff Weight (from Question 2)?

H. What is the Angle of Climb [deg] for the airplane at 200kts at the maximum rate of climb from Question 5? (Make sure to use vertical speed, i.e. ROC, and horizontal speed, i.e. flight speed, in the same unit and pay attention to your calculator settings for trigonometric functions.)

Similar to your discussion for questions A through D, comment on your E through H results. How realistic do you think energies in question F & G were calculated? Which assumption in those questions most probably would have changed in a real flight and how would it have affected results?

Math, Academics

  • Category:- Math
  • Reference No.:- M92802578
  • Price:- $25

Priced at Now at $25, Verified Solution

Have any Question?


Related Questions in Math

Questions -q1 prove the following identitiesa sinx y sinx

Questions - Q1. Prove the following identities a. sin(x + y) + sin(x - y) = 2 sin x cos y b. sec(x - y) = cos(x + y)/(cos 2 x - sin 2 y) c. tan 2 x - sin 2 x = (tan x sin x) 2 Q2. Solve the following equations for x ∈ [0 ...

Maths assignment - 1 analysis of a data setusing a

Maths Assignment - 1. Analysis of a data set Using a continuous data set you are requested to collect in the types of data and gathering data section, perform a statistical analysis on your data. You have opportunities t ...

Questions - provide solution to the following questionsq1

Questions - Provide solution to the following questions: Q1. Evaluate the following: ∫xsin3xdx Q2. If , then for what value of α is A an identity matrix? Q3. The line y = mx + 1 is a tangent to the curve y 2 = 4x. Find t ...

Assessment taskpractical investigation- question 1 requires

Assessment Task Practical Investigation - Question 1 requires selecting reference points from the graph. It is expected that each student will choose different reference points to other students. Take note of the criteri ...

1 suppose that n 10088821 is a product of two distinct

1. Suppose that n = 10088821 is a product of two distinct primes, and Φ(n) = 10082272. Determine the prime factors of n. 2. It is easy to show that the converse of Fermat's Theorem does not hold; i.e., the congruence a n ...

Assignment -question 1 let t and or 0 1 be a boolean

Assignment - Question 1. Let (T, ∧, ∨,', 0, 1) be a Boolean Algebra. Define ∗ : T × T → T and o : T × T → T as follows: x ∗ y := (x ∨ y)' x o y := (x ∧ y)' (a) Show, using the laws of Boolean Algebra, how to define x ∗ y ...

Assignment - provide solution to the following questionsq1

Assignment - Provide solution to the following questions: Q1. Evaluate the following: ∫xsin3x dx Q2. If , then for what value of α is A an identity matrix? Q3. The line y = mx + 1 is a tangent to the curve y 2 = 4x. Find ...

Question 1 what is the nth order approximation using taylor

Question: 1. What is the nth order approximation using Taylor series? 2. What is Error Propagation? 3. Please explain what the total numerical error is? Please illustrate how the change of step size will affect the total ...

Mathematics- algebraic geometry problemlet k denotes an

Mathematics- Algebraic Geometry Problem Let K denotes an algebraically closed field and let P 1 be constructed as in Example 5.5(a) in Gathmanns notes, i.e. P 1 is the gluing of X 1 = A 1 and X 2 = A 1 along  the open su ...

Mathematics- algebraic geometry problemlet k denotes an

Mathematics- Algebraic Geometry Problem Let K denotes an algebraically closed field and let P 1 be constructed as in Example 5.5(a) in Gathmanns notes, i.e. P 1 is the gluing of X 1 = A 1 and X 2 = A 1 along  the open su ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As