Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Algebra Expert

Example: Find out the partial fraction decomposition of following.

             8x - 42 / x2+ 3x -18

Solution

The primary thing to do is factor out the denominator as much as we can.

                          8x - 42 / x2+ 3x -18 = 8x - 42 / ( x+ 6) ( x - 3)

Thus, by comparing to the table above it seems like the partial fraction decomposition has to look like,

                                      8x - 42 / x2+ 3x -18 = A/(x+6) + B/(x-3)

 

Note that we've got distinct coefficients for each term as there is no cause to think that they will be the similar.

Now, we have to determine the values of A & B. The first step is to in fact add the two terms back up. Usually this is simpler than it might seem to be.  Recall that first we required the least common denominator; however we've already got that from the original rational expression.  In this case it is,

                                           LCD = ( x + 6) ( x - 3)

Now, only look at each of term and compare the denominator to the LCD.  Multiply the numerator & denominator through whatever is missing then add.  In this case this gives,

8x - 42/ x2+ 3x -18

=            ( A (x - 3)/( x+ 6) ( x - 3) + (B ( x + 6) /( x+ 6) ( x - 3) +(A ( x - 3) + B ( x + 6) /( x+ 6) ( x - 3)

We require values of A & B so that the numerator of the expression on the left is the simialr as the numerator of the term on the right.  Or,

8x - 42 = A ( x - 3) + B ( x + 6)

It has to be true regardless of the x that we plug into this equation.  As illustrious above there are various ways to do this.  One method will always work, however can be messy and will frequently require knowledge which we don't have yet.  The other way will not always work, however while it does it will greatly reduce the amount of work needed.

In this set of instance the second (and easier) method will always work thus we'll be using that here. Here we are going to make utilization of the fact that this equation have to be true regardless of the x that we plug in.

Thus let's pick an x, plug it in & see what happens. For no clear reason let's try plugging in x= 3 .   Doing this provides,

8 (3) - 42 = A (3 - 3) + B (3 + 6)

-18 = 9B

-2 =B

Can you see why we select this number?  By choosing x= 3 we got the term including A to drop out & we were left with a simple equation which we can solve for B.

Now, we could also select x= -6 for exactly the same cause.  Here is what happens if we utilize this value of x.

8 ( -6) - 42 = A (-6 - 3) + B ( -6 + 6)

-90 = -9 A

10 = A

Thus, by correctly picking x we were capable to quickly & easily get the values of A & B.  Thus, all that we have to do at this point is plug them in to finish the problem.  Following is the partial fraction decomposition for this part.

8x - 42/ x2+ 3x -18

=  (10 /(x+ 6) + (-2 / (x - 3) = (10 /(x+ 6) - (2 / (x - 3)

Notice, we moved the minus sign on the second term down to make the addition a subtraction. We will always do that.

Algebra, Academics

  • Category:- Algebra
  • Reference No.:- M9535961

Have any Question?


Related Questions in Algebra

Assignment topic - abstract algebraq1 let r be the ring of

Assignment Topic - Abstract Algebra Q1: Let R be the ring of all 2 X 2 matrices over Z p , p is a prime. Let G be the set of elements x in the ring R such that det(x) ≠ 0. Find the order of G. Q2: If R is a commutative r ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As