Ask Question, Ask an Expert

+61-413 786 465

info@mywordsolution.com

Ask Math Expert


Home >> Math

Determine the general solution to

2t2y'' + ty' - 3y = 0

It given that y (t) = t -1 is a solution.

 Solution

Reduction of order needs that a solution already be identified.  Without this identified solution we won't be capable to do reduction of order.

Once we have this first solution we will after that assumes a second solution will have the form as

y2 (t) = v (t ) y1 (t )   ..................(1)

 For a suitable choice of v(t). To find out the good choice, we plug the guess in the differential equation and find a new differential equation which can be solved for v(t).

Therefore, let's do that for this problem.  Now there is the form of the second solution as well as the derivatives that we'll require.

y2 (t) = t-1 v,      y2'(t) = -t2 v + t-1 v',      y2''(t) = 2t-3 v -2t-2 v' + t-1 v''

Plugging these in the differential equation provides,

2t2 (2t -3v - 2t -2v′ + t -1v′′)+ t(-t-2v + t-1v′) - 3(t-1v) = 0

Rearranging and simplifying gives

2tv′′ + ( -4 + 1) v′ + (4t-1 - t-1 - 3t-1 ) v = 0

2tv′′ - 3v′ = 0

Remember that upon simplifying the simple terms remaining are those including the derivatives of v. The term including v drops out. If you've done all of your work properly this should always occur. Sometimes, as in the repeated roots case, the first derivative term will as well drop out.

Therefore, in order for (1) to be a solution after that v must satisfy,

2tv'' - 3v' = 0  .............................(2)

It appears to be a problem. So as to find a solution to a second order non-constant, coefficient differential equation we have to to solve a different second order non-constant coefficient differential equation.

Though, this isn't the problem that this appears to be. Since the term including the v drops out we can in fact solve (2) and we can do this with the knowledge which we already have at this point. We will solve it by making the subsequent change of variable.

 w = v′ ⇒         w′ = v′′

Along with this change of variable (2) becomes

 2tw′ - 3w = 0

And it is a linear; first order differential equation which we can solve. This also illustrates the name of this method. We've managed to decrease a second order differential equation down to a first order differential equation.

This is a quite simple first order differential equation thus I'll leave the details of the solving to you. If you require a refresher on solving linear, first order differential equations return to the second section and check out such section. The solution to this differential equation is,

w(t) = ct3/2

Here, this is not fairly what we were after.  We are after a solution to (2).  Though, we can now get this.  Recall our change of variable.

v′ = w

With that we can simply solve for v(t).

v(t) = ∫w dt = ∫ ct3/2 dt = 2/5  ct5/2+ k

It is the most general possible v(t) which we can use to find a second solution. Therefore, just as we did in the repeated roots section, we can select the constants to be anything we want so select them to clear out all the extraneous constants. Under this case we can utilize

 c = 5/2, k = 0,

By using these gives the subsequent for v(t) and for the second solution.

v(t) = t5/2 ⇒ y2(t) = t-1 (t5/2) = t3/2

After that general solution will be,

y(t) = c1t-1 +  c2t3/2

If we had been specified initial conditions we could after that differentiate, apply the initial conditions and resolve for the constants.

Reduction of order, the method utilized in the previous illustration can be used to get second solutions to differential equations. Though, this does need that we already have a solution and frequently finding that first solution is a very tough task and frequently in the process of finding the first solution you will also find the second solution without needing to resort to reduction of order.  Therefore, for those cases while we do have a first solution it is a nice method for finding a second solution.

Math, Academics

  • Category:- Math
  • Reference No.:- M9619186

Have any Question?


Related Questions in Math

Assignment - provide solution to the following questionsq1

Assignment - Provide solution to the following questions: Q1. Evaluate the following: ∫xsin3x dx Q2. If , then for what value of α is A an identity matrix? Q3. The line y = mx + 1 is a tangent to the curve y 2 = 4x. Find ...

1 suppose that n 10088821 is a product of two distinct

1. Suppose that n = 10088821 is a product of two distinct primes, and Φ(n) = 10082272. Determine the prime factors of n. 2. It is easy to show that the converse of Fermat's Theorem does not hold; i.e., the congruence a n ...

Question 1 what is the nth order approximation using taylor

Question: 1. What is the nth order approximation using Taylor series? 2. What is Error Propagation? 3. Please explain what the total numerical error is? Please illustrate how the change of step size will affect the total ...

Assessment taskpractical investigation- question 1 requires

Assessment Task Practical Investigation - Question 1 requires selecting reference points from the graph. It is expected that each student will choose different reference points to other students. Take note of the criteri ...

Questions -q1 prove the following identitiesa sinx y sinx

Questions - Q1. Prove the following identities a. sin(x + y) + sin(x - y) = 2 sin x cos y b. sec(x - y) = cos(x + y)/(cos 2 x - sin 2 y) c. tan 2 x - sin 2 x = (tan x sin x) 2 Q2. Solve the following equations for x ∈ [0 ...

Questions - provide solution to the following questionsq1

Questions - Provide solution to the following questions: Q1. Evaluate the following: ∫xsin3xdx Q2. If , then for what value of α is A an identity matrix? Q3. The line y = mx + 1 is a tangent to the curve y 2 = 4x. Find t ...

Assignment -question 1 let t and or 0 1 be a boolean

Assignment - Question 1. Let (T, ∧, ∨,', 0, 1) be a Boolean Algebra. Define ∗ : T × T → T and o : T × T → T as follows: x ∗ y := (x ∨ y)' x o y := (x ∧ y)' (a) Show, using the laws of Boolean Algebra, how to define x ∗ y ...

Maths assignment - 1 analysis of a data setusing a

Maths Assignment - 1. Analysis of a data set Using a continuous data set you are requested to collect in the types of data and gathering data section, perform a statistical analysis on your data. You have opportunities t ...

Clarity succinctness writing your name and netid1

Clarity, succinctness, writing your name and Netid: 1 Indistinguishability 1. If {X n }n is computationally indistinguishable from {Y n } n , {Y n } n is computationally indistin- guishable from {Z n } n, then (select th ...

Assignment - solving the five question in the very details

Assignment - Solving the five question in the very details, thanks a lot. Question - Let a ∈ P n be a point. Show that the one-point set {a} is a projective variety, and compute explicit generators for the ideal I p ({a} ...

  • 4,153,160 Questions Asked
  • 13,132 Experts
  • 2,558,936 Questions Answered

Ask Experts for help!!

Looking for Assignment Help?

Start excelling in your Courses, Get help with Assignment

Write us your full requirement for evaluation and you will receive response within 20 minutes turnaround time.

Ask Now Help with Problems, Get a Best Answer

Why might a bank avoid the use of interest rate swaps even

Why might a bank avoid the use of interest rate swaps, even when the institution is exposed to significant interest rate

Describe the difference between zero coupon bonds and

Describe the difference between zero coupon bonds and coupon bonds. Under what conditions will a coupon bond sell at a p

Compute the present value of an annuity of 880 per year

Compute the present value of an annuity of $ 880 per year for 16 years, given a discount rate of 6 percent per annum. As

Compute the present value of an 1150 payment made in ten

Compute the present value of an $1,150 payment made in ten years when the discount rate is 12 percent. (Do not round int

Compute the present value of an annuity of 699 per year

Compute the present value of an annuity of $ 699 per year for 19 years, given a discount rate of 6 percent per annum. As